Catálogo de publicaciones - libros
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes: 16th International Symposium, AAECC-16, Las Vegas, NV, USA, February 20-24, 2006, Proceedings
Marc P. C. Fossorier ; Hideki Imai ; Shu Lin ; Alain Poli (eds.)
En conferencia: 16º International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (AAECC) . Las Vegas, NV, USA . February 20, 2006 - February 24, 2006
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Coding and Information Theory; Data Encryption; Discrete Mathematics in Computer Science; Algorithm Analysis and Problem Complexity; Symbolic and Algebraic Manipulation; Algorithms
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-31423-3
ISBN electrónico
978-3-540-31424-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
doi: 10.1007/11617983_31
Complementary Sets and Reed-Muller Codes for Peak-to-Average Power Ratio Reduction in OFDM
Chao-Yu Chen; Chung-Hsuan Wang; Chi-chao Chao
One of the disadvantages of orthogonal frequency division multiplexing (OFDM) systems is the high peak-to-average power ratio (PAPR) of OFDM signals. Golay complementary sets have been proposed to tackle this problem. In this paper, we develop several theorems which can be used to construct Golay complementary sets and multiple-shift complementary sets from Reed-Muller codes. We show that the results of Davis and Jedwab on Golay complementary sequences and those of Paterson and Schmidt on Golay complementary sets can be considered as special cases of our results.
Pp. 317-327
doi: 10.1007/11617983_32
Hadamard Codes of Length 2 ( Odd). Rank and Kernel
Kevin T. Phelps; Josep Rifà; Mercè Villanueva
The rank, , and the dimension of the kernel, , for binary Hadamard codes of length 2 were studied in [12], constructing such codes for all possible pairs (,). Now, we will focus on Hadamard codes of length 2· , >1 odd. As long as there exists a Hadamard code of length 4, constructions of Hadamard codes of length =2· (≥ 3) with any rank, ∈ {4+–3,..., /2}, and any possible dimension of the kernel, ∈ {1,...,–1}, are given.
Pp. 328-337