Catálogo de publicaciones - libros

Compartir en
redes sociales


Applied Algebra, Algebraic Algorithms and Error-Correcting Codes: 16th International Symposium, AAECC-16, Las Vegas, NV, USA, February 20-24, 2006, Proceedings

Marc P. C. Fossorier ; Hideki Imai ; Shu Lin ; Alain Poli (eds.)

En conferencia: 16º International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (AAECC) . Las Vegas, NV, USA . February 20, 2006 - February 24, 2006

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Coding and Information Theory; Data Encryption; Discrete Mathematics in Computer Science; Algorithm Analysis and Problem Complexity; Symbolic and Algebraic Manipulation; Algorithms

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-31423-3

ISBN electrónico

978-3-540-31424-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

Complementary Sets and Reed-Muller Codes for Peak-to-Average Power Ratio Reduction in OFDM

Chao-Yu Chen; Chung-Hsuan Wang; Chi-chao Chao

One of the disadvantages of orthogonal frequency division multiplexing (OFDM) systems is the high peak-to-average power ratio (PAPR) of OFDM signals. Golay complementary sets have been proposed to tackle this problem. In this paper, we develop several theorems which can be used to construct Golay complementary sets and multiple-shift complementary sets from Reed-Muller codes. We show that the results of Davis and Jedwab on Golay complementary sequences and those of Paterson and Schmidt on Golay complementary sets can be considered as special cases of our results.

Pp. 317-327

Hadamard Codes of Length 2 ( Odd). Rank and Kernel

Kevin T. Phelps; Josep Rifà; Mercè Villanueva

The rank, , and the dimension of the kernel, , for binary Hadamard codes of length 2 were studied in [12], constructing such codes for all possible pairs (,). Now, we will focus on Hadamard codes of length 2· , >1 odd. As long as there exists a Hadamard code of length 4, constructions of Hadamard codes of length =2· (≥ 3) with any rank, ∈ {4+–3,..., /2}, and any possible dimension of the kernel, ∈ {1,...,–1}, are given.

Pp. 328-337