Catálogo de publicaciones - libros

Compartir en
redes sociales


Título de Acceso Abierto

High-Performance Modelling and Simulation for Big Data Applications

Joanna Kołodziej ; Horacio González-Vélez (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

System Performance and Evaluation; Computer Communication Networks; Processor Architectures; Information Systems Applications (incl. Internet); Logic Design; Operating Systems

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2019 SpringerLink acceso abierto

Información

Tipo de recurso:

libros

ISBN impreso

978-3-030-16271-9

ISBN electrónico

978-3-030-16272-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© The Editor(s) (if applicable) and The Author(s) 2019

Tabla de contenidos

Survey on AI-Based Multimodal Methods for Emotion Detection

Catherine Marechal; Dariusz Mikołajewski; Krzysztof Tyburek; Piotr Prokopowicz; Lamine Bougueroua; Corinne Ancourt; Katarzyna Węgrzyn-Wolska

Automatic emotion recognition constitutes one of the great challenges providing new tools for more objective and quicker diagnosis, communication and research. Quick and accurate emotion recognition may increase possibilities of computers, robots, and integrated environments to recognize human emotions, and response accordingly to them a social rules. The purpose of this paper is to investigate the possibility of automated emotion representation, recognition and prediction its state-of-the-art and main directions for further research. We focus on the impact of emotion analysis and state of the arts of multimodal emotion detection. We present existing works, possibilities and existing methods to analyze emotion in text, sound, image, video and physiological signals. We also emphasize the most important features for all available emotion recognition modes. Finally, we present the available platform and outlines the existing projects, which deal with multimodal emotion analysis.

Pp. 307-324

Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the State-of-the-Art in the Cloud Era

Aleš Zamuda; Vincenzo Crescimanna; Juan C. Burguillo; Joana Matos Dias; Katarzyna Wegrzyn-Wolska; Imen Rached; Horacio González-Vélez; Roman Senkerik; Claudia Pop; Tudor Cioara; Ioan Salomie; Andrea Bracciali

This chapter surveys the state-of-the-art in forecasting cryptocurrency value by Sentiment Analysis. Key compounding perspectives of current challenges are addressed, including blockchains, data collection, annotation, and filtering, and sentiment analysis metrics using data streams and cloud platforms. We have explored the domain based on this problem-solving metric perspective, i.e., as technical analysis, forecasting, and estimation using a standardized ledger-based technology. The envisioned tools based on forecasting are then suggested, i.e., ranking Initial Coin Offering (ICO) values for incoming cryptocurrencies, trading strategies employing the new Sentiment Analysis metrics, and risk aversion in cryptocurrencies trading through a multi-objective portfolio selection. Our perspective is rationalized on the perspective on elastic demand of computational resources for cloud infrastructures.

Pp. 325-349