Catálogo de publicaciones - libros
Título de Acceso Abierto
YOUMARES 8 – Oceans Across Boundaries: Learning from each other
Simon Jungblut ; Viola Liebich ; Maya Bode (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Marine & Freshwater Sciences; Freshwater & Marine Ecology; Biodiversity; Ecosystems; Fish & Wildlife Biology & Management; Science Education
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No requiere | 2018 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-319-93283-5
ISBN electrónico
978-3-319-93284-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2018
Información sobre derechos de publicación
© The Editor(s) (if applicable) and The Author(s) 2018
Cobertura temática
Tabla de contenidos
Regime Shifts – A Global Challenge for the Sustainable Use of Our Marine Resources
Camilla Sguotti; Xochitl Cormon
Over the last decades many marine systems have undergone drastic changes often resulting in new ecologically structured and sometimes economically less valuable states. In particular, the additive effects of anthropogenic stressors (e.g., fishing, climate change) seem to play a fundamental role in causing unexpected and sudden shifts between system states, generally termed regime shifts. Recently, many examples of regime shifts have been documented worldwide and their mechanisms and consequences have been vigorously discussed. Understanding causes and mechanisms of regime shifts is of great importance for the sustainable use of natural resources and their management, especially in marine ecosystems. Hence, we conducted a session entitled “Ecosystem dynamics in a changing world, regime shifts and resilience in marine communities” during the 8th YOUMARES conference (Kiel, 13–15th September 2017) to present regime shifts concepts and examples to a broad range of marine scientists (e.g., biologists and/or ecologists, physicists, climatologists, sociologists) and highlight their importance for the marine ecosystems worldwide.
In this chapter, we first provide examples of regime shifts which have occurred over the last decades in our oceans and discuss their potential implications for the sustainable use of marine resources; then we review regime shift theory and associated concepts. Finally, we review recent advances and future challenges to integrate regime shift theory into holistic marine ecosystem-based management approaches.
Pp. 155-166
Biodiversity and the Functioning of Ecosystems in the Age of Global Change: Integrating Knowledge Across Scales
Francisco R. Barboza; Maysa Ito; Markus Franz
The dramatic decline of biodiversity worldwide has raised a general concern on the impacts this process could have for the well-being of humanity. Human societies strongly depend on the benefits provided by natural ecosystems, which are the result of biogeochemical processes governed by species activities and their interaction with abiotic compartments. After decades of experimental research on the biodiversity-functioning relationship, a relative agreement has been reached on the mechanisms underlying the impacts that biodiversity loss can have on ecosystem processes. However, a general consensus is still missing. We suggest that the reason preventing an integration of existing knowledge is the scale discrepancy between observations on global change impacts and biodiversity-functioning experiments. The present chapter provides an overview of global change impacts on biodiversity across various ecological scales and its consequences for ecosystem functioning, highlighting what is known and where knowledge gaps still persist. Furthermore, the reader will be introduced to a set of tools that allow a multi-scale analysis of how global change drivers impact ecosystem functioning.
Pp. 167-178
Microplastics in Aquatic Systems – Monitoring Methods and Biological Consequences
Thea Hamm; Claudia Lorenz; Sarah Piehl
Microplastic research started at the turn of the millennium and is of growing interest, as microplastics have the potential to affect a whole range of organisms, from the base of the food web to top predators, including humans. To date, most studies are initial assessments of microplastic abundances for a certain area, thereby generally distinguishing three different sampling matrices: water, sediment and biota samples. Those descriptive studies are important to get a first impression of the extent of the problem, but for a proper risk assessment of ecosystems and their inhabitants, analytical studies of microplastic fluxes, sources, sinks, and transportation pathways are of utmost importance. Moreover, to gain insight into the effects microplastics might have on biota, it is crucial to identify realistic environmental concentrations of microplastics. Thus, profound knowledge about the effects of microplastics on biota is still scarce. Effects can vary regarding habitat, functional group of the organism, and polymer type for example, making it difficult to find quick answers to the many open questions. In addition, microplastic research is accompanied by many methodological challenges that need to be overcome first to assess the impact of microplastics on aquatic systems. Thereby, a development of standardized operational protocols (SOPs) is a pre-requisite for comparability among studies. Since SOPs are still lacking and new methods are developed or optimized very frequently, the aim of this chapter is to point out the most crucial challenges in microplastic research and to gather the most recent promising methods used to quantify environmental concentrations of microplastics and effect studies.
Pp. 179-195