Catálogo de publicaciones - libros
Título de Acceso Abierto
Nanoinformatics
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Machine learning; Big data; Atomic resolution characterization; First-principles calculations; Nanomaterials synthesis
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No requiere | 2018 | Directory of Open access Books | ||
No requiere | 2018 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-319-58315-0
ISBN electrónico
978-3-319-58316-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2018
Cobertura temática
Tabla de contenidos
Haptics for the Development of Fundamental Rhythm Skills, Including Multi-limb Coordination
Simon Holland; Anders Bouwer; Oliver Hödl
This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight is particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms—particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards’ players and more generally to all musicians who need a firm grasp of rhythm.
Part II - Haptic Musical Interfaces: Design and Applications | Pp. 215-237
Touchscreens and Musical Interaction
M. Ercan Altinsoy; Sebastian Merchel
Touch-sensitive interfaces are more and more used for music production. Virtual musical instruments, such as virtual pianos or drum sets, can be played on mobile devices like phones. Audio tracks can be mixed using a touchscreen in a DJ set-up. Samplers, sequencers or drum machines can be implemented on tablets for use in live performances. The main drawback of traditional touch-sensitive surfaces is the missing haptic feedback. This chapter discusses if adding specifically designed vibrations helps improve the user interaction with touchscreens. An audio mixing application for touchscreens is used to investigate if tactile information is useful for interaction with virtual musical instruments and percussive loops. Additionally, the interaction of auditory and tactile perception is evaluated. The effect of loudness on haptic feedback is discussed using the example of touch-based musical interaction.
Part II - Haptic Musical Interfaces: Design and Applications | Pp. 239-255
Implementation and Characterization of Vibrotactile Interfaces
Stefano Papetti; Martin Fröhlich; Federico Fontana; Sébastien Schiesser; Federico Avanzini
While a standard approach is more or less established for rendering basic vibratory cues in consumer electronics, the implementation of advanced vibrotactile feedback still requires designers and engineers to solve a number of technical issues. Several off-the-shelf vibration actuators are currently available, having different characteristics and limitations that should be considered in the design process. We suggest an iterative approach to design in which vibrotactile interfaces are validated by testing their accuracy in rendering vibratory cues and in measuring input gestures. Several examples of prototype interfaces yielding audio-haptic feedback are described, ranging from open-ended devices to musical interfaces, addressing their design and the characterization of their vibratory output.
Part II - Haptic Musical Interfaces: Design and Applications | Pp. 257-282