Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

The Universe is Brighter in the Direction of Our Motion: Galaxy Counts and Fluxes are Consistent with the CMB Dipole

Jeremy DarlingORCID

<jats:title>Abstract</jats:title> <jats:p>An observer moving with respect to the cosmic rest frame should observe a concentration and brightening of galaxies in the direction of motion and a spreading and dimming in the opposite direction. The velocity inferred from this dipole should match that of the cosmic microwave background (CMB) temperature dipole if galaxies are on average at rest with respect to the CMB rest frame. However, recent studies have claimed a many-fold enhancement of galaxy counts and flux in the direction of the solar motion compared to the CMB expectation, calling into question the standard cosmology. Here we show that the sky distribution and brightness of extragalactic radio sources are consistent with the CMB dipole in direction and velocity. We use the first epoch of the Very Large Array Sky Survey combined with the Rapid Australian Square Kilometer Array Pathfinder Continuum Survey to estimate the dipole via several different methods, and all show similar results. Typical fits find a <jats:inline-formula> <jats:tex-math> <?CDATA ${331}_{-107}^{+161}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>331</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>107</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>161</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6f08ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> km s<jats:sup>−1</jats:sup> velocity dipole with apex <jats:inline-formula> <jats:tex-math> <?CDATA $({\ell },b)=({271}_{-58}^{+55},{56}_{-35}^{+13})$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="italic">ℓ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>271</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>58</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>55</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>,</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>56</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>35</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>13</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6f08ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> in Galactic coordinates from source counts and <jats:inline-formula> <jats:tex-math> <?CDATA ${399}_{-199}^{+264}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>399</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>199</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>264</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6f08ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> km s<jats:sup>−1</jats:sup> toward <jats:inline-formula> <jats:tex-math> <?CDATA $({\ell },b)=({301}_{-30}^{+30},{43}_{-17}^{+19})$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="italic">ℓ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>301</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>30</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>30</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>,</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>43</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>19</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6f08ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> from radio fluxes. These are consistent with the CMB-solar velocity, 370 km s<jats:sup>−1</jats:sup> toward (<jats:italic>ℓ</jats:italic>, <jats:italic>b</jats:italic>) = (264, 48), and show that galaxies are on average at rest with respect to the rest frame of the early universe, as predicted by the canonical cosmology.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L14

The Warm Neptune GJ 3470b Has a Polar Orbit

Guđmundur StefànssonORCID; Suvrath MahadevanORCID; Cristobal PetrovichORCID; Joshua N. WinnORCID; Shubham KanodiaORCID; Sarah C. MillhollandORCID; Marissa ManeyORCID; Caleb I. CañasORCID; John WisniewskiORCID; Paul RobertsonORCID; Joe P. NinanORCID; Eric B. FordORCID; Chad F. BenderORCID; Cullen H. BlakeORCID; Heather CeglaORCID; William D. CochranORCID; Scott A. DiddamsORCID; Jiayin DongORCID; Michael EndlORCID; Connor FredrickORCID; Samuel HalversonORCID; Fred HeartyORCID; Leslie HebbORCID; Teruyuki HiranoORCID; Andrea S. J. LinORCID; Sarah E. LogsdonORCID; Emily LubarORCID; Michael W. McElwainORCID; Andrew J. MetcalfORCID; Andrew MonsonORCID; Jayadev RajagopalORCID; Lawrence W. RamseyORCID; Arpita RoyORCID; Christian SchwabORCID; Heidi SchweikerORCID; Ryan C. TerrienORCID; Jason T. WrightORCID

<jats:title>Abstract</jats:title> <jats:p>The warm Neptune GJ 3470b transits a nearby (<jats:italic>d</jats:italic> = 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of <jats:inline-formula> <jats:tex-math> <?CDATA $\lambda ={98}_{-12}^{+15\ \circ }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>98</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>15</mml:mn> <mml:mspace width="0.33em" /> <mml:mo>◦</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6e3cieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and a <jats:inline-formula> <jats:tex-math> <?CDATA $v\sin i={0.85}_{-0.33}^{+0.27}\,\mathrm{km}\,{{\rm{s}}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>v</mml:mi> <mml:mi>sin</mml:mi> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.85</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.33</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.27</mml:mn> </mml:mrow> </mml:msubsup> <mml:mspace width="0.25em" /> <mml:mi>km</mml:mi> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6e3cieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of <jats:inline-formula> <jats:tex-math> <?CDATA $\psi ={95}_{-8}^{+9\ \circ }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ψ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>95</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>9</mml:mn> <mml:mspace width="0.33em" /> <mml:mo>◦</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6e3cieqn3.gif" xlink:type="simple" /> </jats:inline-formula>, revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of <jats:inline-formula> <jats:tex-math> <?CDATA $\dot{\gamma }=-0.0022\pm 0.0011\,{\rm{m}}\,{{\rm{s}}}^{-1}\,{\mathrm{day}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover accent="true"> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̇</mml:mo> </mml:mrow> </mml:mover> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mn>0.0022</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.0011</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">m</mml:mi> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>day</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6e3cieqn4.gif" xlink:type="simple" /> </jats:inline-formula> over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L15

Ellipsars: Ring-like Explosions from Flattened Stars

Marcus DuPontORCID; Andrew MacFadyenORCID; Jonathan ZrakeORCID

<jats:title>Abstract</jats:title> <jats:p>The stellar cataclysms producing astronomical transients have long been modeled as either a point-like explosion or jet-like engine ignited at the center of a spherically symmetric star. However, many stars are observed, or are expected on theoretical grounds, not to be precisely spherically symmetric, but rather to have a slightly flattened geometry similar to that of an oblate spheroid. Here we present axisymmetric two-dimensional hydrodynamical simulations of the dynamics of point-like explosions initiated at the center of an aspherical massive star with a range of oblateness. We refer to these exploding aspherical stars as “ellipsars” in reference to the elliptical shape of the isodensity contours of their progenitors in the two-dimensional axisymmetric case. We find that ellipsars are capable of accelerating expanding rings of relativistic ejecta. which may lead to the production of astronomical transients including low-luminosity gamma-ray bursts, relativistic supernovae, and fast blue optical transients</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L16

Solar-like Dynamos and Rotational Scaling of Cycles from Star-in-a-box Simulations

Petri J. KäpyläORCID

<jats:title>Abstract</jats:title> <jats:p>Magnetohydrodynamic star-in-a-box simulations of convection and dynamos in a solar-like star with different rotation rates are presented. These simulations produce solar-like differential rotation with a fast equator and slow poles and magnetic activity that resembles that of the Sun with equatorward migrating activity at the surface. Furthermore, the ratio of rotation to cycle period is almost constant, as the rotation period decreases in the limited sample considered here. This is reminiscent of the suggested inactive branch of stars from observations and differs from most earlier simulation results from spherical shell models. While the exact excitation mechanism of the dynamos in the current simulations is not yet clear, it is shown that it is plausible that the greater freedom that the magnetic field has due to the inclusion of the radiative core and regions exterior to the star are important in shaping the dynamo.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L17

Neutrino Mass Bounds in the Era of Tension Cosmology

Eleonora Di Valentino; Alessandro Melchiorri

<jats:title>Abstract</jats:title> <jats:p>The measurements of cosmic microwave background (CMB) anisotropies made by the Planck satellite provide extremely tight upper bounds on the total neutrino mass scale (Σ<jats:italic>m</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> &lt; 0.26 eV at 95% C.L.). However, as recently discussed in the literature, the Planck data show anomalies that could affect this result. Here we provide new constraints on neutrino masses using the recent and complementary CMB measurements from the Atacama Cosmology Telescope DR4 and the South Pole Telescope SPT-3G experiments. We found that both the ACT-DR4 and SPT-3G data, when combined with WMAP, mildly suggest a neutrino mass with Σ<jats:italic>m</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> = 0.68 ± 0.31 and <jats:inline-formula> <jats:tex-math> <?CDATA ${0.46}_{-0.36}^{+0.14}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>0.46</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.36</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.14</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6ef5ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> eV at 68% C.L., respectively. Moreover, when CMB lensing from the Planck experiment is included, the ACT-DR4 data now indicate a neutrino mass above the two standard deviations, with <jats:inline-formula> <jats:tex-math> <?CDATA ${\rm{\Sigma }}{m}_{\nu }={0.60}_{-0.50}^{+0.44}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="normal">Σ</mml:mi> <mml:msub> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.60</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.50</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.44</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6ef5ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> eV at 95% C.L., while WMAP+SPT-3G provides a weak upper limit of Σ<jats:italic>m</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> &lt; 0.37 eV at 68% C.L. Interestingly, these results are consistent with the Planck CMB+lensing constraint of <jats:inline-formula> <jats:tex-math> <?CDATA ${\rm{\Sigma }}{m}_{\nu }={0.41}_{-0.25}^{+0.17}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="normal">Σ</mml:mi> <mml:msub> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.41</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.25</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.17</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6ef5ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> eV at 68% C.L. when variations in the <jats:italic>A</jats:italic> <jats:sub>lens</jats:sub> parameter are considered. We also show that these indications are still present after the inclusion of BAO or Type Ia supernova data in extended cosmologies that are usually considered to solve the so-called Hubble tension. In this respect, we note that in these models, CMB+BAO constraints prefer a higher neutrino mass for higher values of the Hubble constant. A combination of ACT-DR4, WMAP, BAO, and constraints on the Hubble constant from the SH0ES collaboration gives <jats:inline-formula> <jats:tex-math> <?CDATA ${\rm{\Sigma }}{m}_{\nu }={0.39}_{-0.25}^{+0.13}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="normal">Σ</mml:mi> <mml:msub> <mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.39</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.25</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.13</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac6ef5ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> eV at 68% C.L. in extended cosmologies.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L18

Multiwavelength View of the Close-by GRB 190829A Sheds Light on Gamma-Ray Burst Physics

Om Sharan SalafiaORCID; Maria Edvige RavasioORCID; Jun YangORCID; Tao AnORCID; Monica OrientiORCID; Giancarlo GhirlandaORCID; Lara NavaORCID; Marcello GirolettiORCID; Prashanth MohanORCID; Riccardo Spinelli; Yingkang ZhangORCID; Benito MarcoteORCID; Giuseppe CimòORCID; Xuefeng WuORCID; Zhixuan Li

<jats:title>Abstract</jats:title> <jats:p>We monitored the position of the close-by (about 370 Mpc) gamma-ray burst GRB 190829A, which originated from a massive star collapse, through very long baseline interferometry (VLBI) observations with the European VLBI Network and the Very Long Baseline Array, carrying out a total of nine observations between 9 and 117 days after the gamma-ray burst at 5 and 15 GHz, with a typical resolution of a few milliarcseconds. From a state-of-the art analysis of these data, we obtained valuable limits on the source size and expansion rate. The limits are in agreement with the size evolution entailed by a detailed modeling of the multiwavelength light curves with a forward-plus-reverse shock model, which agrees with the observations across almost 18 orders of magnitude in frequency (including the HESS data at TeV photon energies) and more than 4 orders of magnitude in time. Thanks to the multiwavelength, high-cadence coverage of the afterglow, inherent degeneracies in the afterglow model are broken to a large extent, allowing us to capture some unique physical insights; we find a low prompt emission efficiency of ≲10<jats:sup>−3</jats:sup>, a low fraction of relativistic electrons in the forward shock downstream <jats:italic>χ</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> &lt; 13% (90% credible level), and a rapid decay of the magnetic field in the reverse shock downstream after the shock crossing. While our model assumes an on-axis jet, our VLBI astrometry is not sufficiently tight as to exclude any off-axis viewing angle, but we can exclude the line of sight to have been more than ∼2° away from the border of the gamma-ray-producing region based on compactness arguments.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L19

When Do Stars Go Boom?

Harvey B. RicherORCID; Roger E. CohenORCID; Jeremy HeylORCID; Jason KaliraiORCID; Ilaria CaiazzoORCID; Matteo CorrentiORCID; Jeffrey CummingsORCID; Paul GoudfrooijORCID; Bradley M. S. HansenORCID; Molly PeeplesORCID; Elena SabbiORCID; Pier-Emmanuel TremblayORCID; Benjamin WilliamsORCID

<jats:title>Abstract</jats:title> <jats:p>The maximum mass of a star that can produce a white dwarf (WD) is an important astrophysical quantity. One of the best approaches to establishing this limit is to search for WDs in young star clusters in which only massive stars have had time to evolve and where the mass of the progenitor can be established from the cooling time of the WD together with the age of the cluster. Searches in young Milky Way clusters have not thus far yielded WD members more massive than about 1.1 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, well below the Chandrasekhar mass of 1.38 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, nor progenitors with masses in excess of about 6 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. However, the hunt for potentially massive WDs that escaped their cluster environs is yielding interesting candidates. To expand the cluster sample further, we used HST to survey four young and massive star clusters in the Magellanic Clouds for bright WDs that could have evolved from stars as massive as 10 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. We located five potential WD candidates in the oldest of the four clusters examined, the first extragalactic single WDs thus far discovered. As these hot WDs are very faint at optical wavelengths, final confirmation will likely have to await spectroscopy with 30 m class telescopes.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L20

On the Energization of Pickup Ions Downstream of the Heliospheric Termination Shock by Comparing 0.52–55 keV Observed Energetic Neutral Atom Spectra to Ones Inferred from Proton Hybrid Simulations

Matina Gkioulidou; M. OpherORCID; M. KornbleuthORCID; K. DialynasORCID; J. GiacaloneORCID; J. D. RichardsonORCID; G. P. ZankORCID; S. A. FuselierORCID; D. G. MitchellORCID; S. M. Krimigis; E. RoussosORCID; I. BaliukinORCID

<jats:title>Abstract</jats:title> <jats:p>We present an unprecedented comparison of ∼0.52–55 keV energetic neutral atom (ENA) heliosheath measurements, remotely sensed by the Interstellar Boundary Explorer (IBEX) mission and the Ion and Neutral Camera (INCA) on the Cassini mission, with modeled ENAs inferred from interstellar pickup protons that have been accelerated at the termination shock, using hybrid simulations, to assess the pickup ion energetics within the heliosheath. This is the first study to use hybrid simulations that are able to accurately model the acceleration of ions to tens of keV energies, which is essential in order to model ENA fluxes in the heliosheath, covering the full energy range observed by IBEX and CASSINI/INCA. The observed ENA intensities are an average value over the time period from 2009 to the end of 2012, along the Voyager 2 (V2) trajectory. The hybrid simulations upstream of the termination shock, where V2 crossed, are constrained by observations. We report an energy-dependent discrepancy between observed and simulated ENA fluxes, with the observed ENA fluxes being persistently higher than the simulated ones. Our analysis reveals that the termination shock may not accelerate pickup ions to sufficient energies to account for the observed ENA fluxes. We, thus, suggest that the further acceleration of these pickup ions is most likely occurring within the heliosheath, via additional physical processes like turbulence or magnetic reconnection. However, the redistribution of energy inside the heliosheath remains an open question.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L21

Enhanced Star Formation Activity of Extreme Jellyfish Galaxies in Massive Clusters and the Role of Ram Pressure Stripping

Jeong Hwan LeeORCID; Myung Gyoon LeeORCID; Jae Yeon MunORCID; Brian S. Cho; Jisu KangORCID

<jats:title>Abstract</jats:title> <jats:p>Jellyfish galaxies are an excellent tool to investigate the short-term effects of ram pressure stripping (RPS) on star formation in cluster environments. It has been thought that the star formation activity of jellyfish galaxies may depend on the host-cluster properties, but previous studies have not yet found a clear correlation. In this study, we estimate the H<jats:italic>α</jats:italic>-based star formation rates (SFRs) of five jellyfish galaxies in massive clusters (<jats:italic>σ</jats:italic> <jats:sub> <jats:italic>v</jats:italic>,cl</jats:sub> ≳ 1000 km s<jats:sup>−1</jats:sup>) at <jats:italic>z</jats:italic> ∼ 0.3−0.4 using Gemini GMOS/IFU observations to explore the relationship. Combining our results with those in the literature, we find that the star formation activity of jellyfish galaxies shows a positive correlation with their host-cluster velocity dispersion as a proxy of cluster mass and dynamical states. We divide the jellyfish galaxy sample into two groups with strong and weak RPS signatures using a morphological class. In the phase-space diagram, the jellyfish galaxies with strong RPS features show a higher SFR and a stronger central concentration than those with weak RPS features. We estimate their SFR excess relative to the star formation main sequence (starburstiness; <jats:italic>R</jats:italic> <jats:sub>SB</jats:sub> = SFR/SFR<jats:sub>MS</jats:sub>(<jats:italic>z</jats:italic>)) and the density of the surrounding intracluster medium (ICM) using scaling relations with the cluster velocity dispersion. As a result, the starburstiness of jellyfish galaxies with strong RPS signatures clearly exhibits positive correlations with cluster velocity dispersion, ICM density, and strength of ram pressure. This shows that the relation between RPS and star formation activity of jellyfish galaxies depends on the host-cluster properties and strength of the ram pressure.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L22

GRB 211227A as a Peculiar Long Gamma-Ray Burst from a Compact Star Merger

Hou-Jun LüORCID; Hao-Yu Yuan; Ting-Feng YiORCID; Xiang-Gao Wang; You-Dong Hu; Yong Yuan; Jared Rice; Jian-Guo Wang; Jia-Xin Cao; De-Feng Kong; Emilio Fernandez-García; Alberto J. Castro-Tirado; Ji-Shun Lian; Wen-Pei Gan; Shan-Qin WangORCID; Li-Ping Xin; M. D. Caballero-García; Yu-Feng Fan; En-Wei LiangORCID

<jats:title>Abstract</jats:title> <jats:p>Long-duration gamma-ray bursts (GRBs) associated with supernovae (SNe) are believed to originate from massive star core-collapse events, whereas short-duration GRBs that are related to compact star mergers are expected to be accompanied by kilonovae. GRB 211227A, which lasted about 84 s, had an initial short/hard spike followed by a series of soft gamma-ray extended emission at redshift <jats:italic>z</jats:italic> = 0.228. We performed follow-up observations of the optical emission using BOOTES, LCOGT, and the Lijiang 2.4 m telescope, but we detected no associated supernova signature, even down to very stringent limits at such a low redshift. We observed the host galaxy within a large error circle and roughly estimated the physical offset of GRB 211227A as 20.47 ± 14.47 kpc from the galaxy center. These properties are similar to those of GRB 060614, and suggest that the progenitor of GRB 211227A is not favored to be associated with the death of massive stars. Hence, we propose that GRB 211227A originates from a compact star merger. Calculating pseudo-kilonova emission for this case by adopting the typical parameters, we find that any associated pseudo-kilonova is too faint to be detected. If this is the case, it explains naturally the characteristics of the prompt emission, the lack of SN and kilonova emission, and the large physical offset from the galaxy center.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L23