Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Letters (ApJL)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2010 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
2041-8205
ISSN electrónico
2041-8213
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Identification of Active Magnetic Reconnection Using Magnetic Flux Transport in Plasma Turbulence
Tak Chu Li; Yi-Hsin Liu; Yi Qi
<jats:title>Abstract</jats:title> <jats:p>Magnetic reconnection has been suggested to play an important role in the dynamics and energetics of plasma turbulence by spacecraft observations, simulations, and theory over the past two decades, and recently, by magnetosheath observations of MMS. A new method based on magnetic flux transport (MFT) has been developed to identify reconnection activity in turbulent plasmas. This method is applied to a gyrokinetic simulation of two-dimensional (2D) plasma turbulence. Results on the identification of three active reconnection X-points are reported. The first two X-points have developed bidirectional electron outflow jets. Beyond the category of electron-only reconnection, the third X-point does not have bidirectional electron outflow jets because the flow is modified by turbulence. In all cases, this method successfully identifies active reconnection through clear inward and outward flux transport around the X-points. This transport pattern defines reconnection and produces a new quadrupolar structure in the divergence of MFT. This method is expected to be applicable to spacecraft missions such as MMS, Parker Solar Probe, and Solar Orbiter.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L28
A CO Survey of SpARCS Star-forming Brightest Cluster Galaxies: Evidence for Uniformity in BCG Molecular Gas Processing across Cosmic Time
Delaney A. Dunne; Tracy M. A. Webb; Allison Noble; Christopher Lidman; Heath Shipley; Adam Muzzin; Gillian Wilson; H. K. C. Yee
<jats:title>Abstract</jats:title> <jats:p>We present ALMA CO (2-1) detections of 24 star-forming brightest cluster galaxies (BCGs) over 0.2 < <jats:italic>z</jats:italic> < 1.2, constituting the largest and most distant sample of molecular gas measurements in BCGs to date. The BCGs are selected from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) to be IR-bright and therefore star-forming. We find that molecular gas is common in star-forming BCGs, detecting CO at a detection rate of 80% in our target sample of 30 objects. We additionally provide measurements of the star formation rate and stellar mass, calculated from existing MIPS 24 <jats:italic>μ</jats:italic>m and IRAC 3.6 <jats:italic>μ</jats:italic>m fluxes, respectively. We find these galaxies have molecular gas masses of 0.7–11.0 × 10<jats:sup>10</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, comparable to other BCGs in this redshift range, and specific star formation rates that trace the main sequence of Elbaz et al. We compare our BCGs to those of the lower-redshift, cooling-flow BCG sample assembled by Edge and find that at <jats:italic>z</jats:italic> ≲ 0.6 the two samples show very similar correlations between their gas masses and specific SFRs. We suggest that, in this redshift regime, the ∼10% of BCGs that are star-forming process accreted molecular gas into stars through means that are agnostic to both their redshift and their cluster mass.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L29
Erratum: “Wandering Supermassive Black Holes in Milky-Way-mass Halos” (2018, ApJL, 857, L22)
Michael Tremmel; Fabio Governato; Marta Volonteri; Andrew Pontzen; Thomas R. Quinn
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L30
S0-2 Star, G1- and G2-objects, and Flaring Activity of the Milky Way’s Galactic Center Black Hole in 2019
Lena Murchikova
<jats:title>Abstract</jats:title> <jats:p>In 2019, the Galactic center black hole Sgr A* produced an unusually high number of bright near-infrared flares, including the brightest-ever detected flare. We propose that this activity was triggered by the near simultaneous infall of material shed by G1 and G2 objects due to their interaction with the background accretion flow. We discuss mechanisms by which S-stars and G-objects shed material, and estimate both the quantity of material and the infall time to reach the black hole.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L1
3D Solar Coronal Loop Reconstructions with Machine Learning
Iulia Chifu; Ricardo Gafeira
<jats:title>Abstract</jats:title> <jats:p>The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona. The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to ascertain the 3D structure of the coronal magnetic field is by performing magnetic field extrapolations from the photosphere to the corona. In previous work, it was shown that by prescribing the 3D-reconstructed loops’ geometry, the magnetic field extrapolation produces a solution with a better agreement between the modeled field and the reconstructed loops. This also improves the quality of the field extrapolation. Stereoscopy, which uses at least two view directions, is the traditional method for performing 3D coronal loop reconstruction. When only one vantage point of the coronal loops is available, other 3D reconstruction methods must be applied. Within this work, we present a method for the 3D loop reconstruction based on machine learning. Our purpose for developing this method is to use as many observed coronal loops in space and time for the modeling of the coronal magnetic field. Our results show that we can build machine-learning models that can retrieve 3D loops based only on their projection information. Ultimately, the neural network model will be able to use only 2D information of the coronal loops, identified, traced, and extracted from the extreme-ultraviolet images, for the calculation of their 3D geometry.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L10
Pure Density Evolution of the Ultraviolet Quasar Luminosity Function at 2 ≲ z ≲ 6
Yongjung Kim; Myungshin Im
<jats:title>Abstract</jats:title> <jats:p>The quasar luminosity function (QLF) shows the active galactic nucleus (AGN) demography as a result of the combination of the growth and the evolution of black holes, galaxies, and dark matter halos along the cosmic time. The recent wide and deep surveys have improved the census of high-redshift quasars, making it possible to construct reliable ultraviolet (UV) QLFs at 2 ≲ <jats:italic>z</jats:italic> ≲ 6 down to <jats:italic>M</jats:italic> <jats:sub>1450</jats:sub> = − 23 mag. By parameterizing these up-to-date observed UV QLFs that are the most extensive in both luminosity and survey area coverage at a given redshift, we show that the UV QLF has a universal shape and its evolution can be approximated by a pure density evolution (PDE). In order to explain the observed QLF, we construct a model QLF employing the halo mass function, a number of empirical scaling relations, and the Eddington ratio distribution. We also include the outshining of AGN over its host galaxy, which made it possible to reproduce a moderately flat shape of the faint end of the observed QLF (slope of ∼ − 1.1). This model successfully explains the observed PDE behavior of UV QLF at <jats:italic>z</jats:italic> > 2, meaning that the QLF evolution at high redshift can be understood under the framework of halo mass function evolution. The importance of the outshining effect in our model also implies that there could be a hidden population of faint AGNs (<jats:italic>M</jats:italic> <jats:sub>1450</jats:sub> ≳ − 24 mag), which are buried under their host galaxy light.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L11
First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
Kazunori Akiyama; Juan Carlos Algaba; Antxon Alberdi; Walter Alef; Richard Anantua; Keiichi Asada; Rebecca Azulay; Anne-Kathrin Baczko; David Ball; Mislav Baloković; John Barrett; Bradford A. Benson; Dan Bintley; Lindy Blackburn; Raymond Blundell; Wilfred Boland; Katherine L. Bouman; Geoffrey C. Bower; Hope Boyce; Michael Bremer; Christiaan D. Brinkerink; Roger Brissenden; Silke Britzen; Avery E. Broderick; Dominique Broguiere; Thomas Bronzwaer; Do-Young Byun; John E. Carlstrom; Andrew Chael; Chi-kwan Chan; Shami Chatterjee; Koushik Chatterjee; Ming-Tang Chen; Yongjun Chen; Paul M. Chesler; Ilje Cho; Pierre Christian; John E. Conway; James M. Cordes; Thomas M. Crawford; Geoffrey B. Crew; Alejandro Cruz-Osorio; Yuzhu Cui; Jordy Davelaar; Mariafelicia De Laurentis; Roger Deane; Jessica Dempsey; Gregory Desvignes; Jason Dexter; Sheperd S. Doeleman; Ralph P. Eatough; Heino Falcke; Joseph Farah; Vincent L. Fish; Ed Fomalont; H. Alyson Ford; Raquel Fraga-Encinas; William T. Freeman; Per Friberg; Christian M. Fromm; Antonio Fuentes; Peter Galison; Charles F. Gammie; Roberto García; Olivier Gentaz; Boris Georgiev; Ciriaco Goddi; Roman Gold; José L. Gómez; Arturo I. Gómez-Ruiz; Minfeng Gu; Mark Gurwell; Kazuhiro Hada; Daryl Haggard; Michael H. Hecht; Ronald Hesper; Luis C. Ho; Paul Ho; Mareki Honma; Chih-Wei L. Huang; Lei Huang; David H. Hughes; Shiro Ikeda; Makoto Inoue; Sara Issaoun; David J. James; Buell T. Jannuzi; Michael Janssen; Britton Jeter; Wu Jiang; Alejandra Jimenez-Rosales; Michael D. Johnson; Svetlana Jorstad; Taehyun Jung; Mansour Karami; Ramesh Karuppusamy; Tomohisa Kawashima; Garrett K. Keating; Mark Kettenis; Dong-Jin Kim; Jae-Young Kim; Jongsoo Kim; Junhan Kim; Motoki Kino; Jun Yi Koay; Yutaro Kofuji; Patrick M. Koch; Shoko Koyama; Michael Kramer; Carsten Kramer; Thomas P. Krichbaum; Cheng-Yu Kuo; Tod R. Lauer; Sang-Sung Lee; Aviad Levis; Yan-Rong Li; Zhiyuan Li; Michael Lindqvist; Rocco Lico; Greg Lindahl; Jun Liu; Kuo Liu; Elisabetta Liuzzo; Wen-Ping Lo; Andrei P. Lobanov; Laurent Loinard; Colin Lonsdale; Ru-Sen Lu; Nicholas R. MacDonald; Jirong Mao; Nicola Marchili; Sera Markoff; Daniel P. Marrone; Alan P. Marscher; Iván Martí-Vidal; Satoki Matsushita; Lynn D. Matthews; Lia Medeiros; Karl M. Menten; Izumi Mizuno; Yosuke Mizuno; James M. Moran; Kotaro Moriyama; Monika Moscibrodzka; Cornelia Müller; Gibwa Musoke; Alejandro Mus Mejías; Daniel Michalik; Andrew Nadolski; Hiroshi Nagai; Neil M. Nagar; Masanori Nakamura; Ramesh Narayan; Gopal Narayanan; Iniyan Natarajan; Antonios Nathanail; Joey Neilsen; Roberto Neri; Chunchong Ni; Aristeidis Noutsos; Michael A. Nowak; Hiroki Okino; Héctor Olivares; Gisela N. Ortiz-León; Tomoaki Oyama; Feryal Özel; Daniel C. M. Palumbo; Jongho Park; Nimesh Patel; Ue-Li Pen; Dominic W. Pesce; Vincent Piétu; Richard Plambeck; Aleksandar PopStefanija; Oliver Porth; Felix M. Pötzl; Ben Prather; Jorge A. Preciado-López; Dimitrios Psaltis; Hung-Yi Pu; Venkatessh Ramakrishnan; Ramprasad Rao; Mark G. Rawlings; Alexander W. Raymond; Luciano Rezzolla; Angelo Ricarte; Bart Ripperda; Freek Roelofs; Alan Rogers; Eduardo Ros; Mel Rose; Arash Roshanineshat; Helge Rottmann; Alan L. Roy; Chet Ruszczyk; Kazi L. J. Rygl; Salvador Sánchez; David Sánchez-Arguelles; Mahito Sasada; Tuomas Savolainen; F. Peter Schloerb; Karl-Friedrich Schuster; Lijing Shao; Zhiqiang Shen; Des Small; Bong Won Sohn; Jason SooHoo; He Sun; Fumie Tazaki; Alexandra J. Tetarenko; Paul Tiede; Remo P. J. Tilanus; Michael Titus; Kenji Toma; Pablo Torne; Tyler Trent; Efthalia Traianou; Sascha Trippe; Ilse van Bemmel; Huib Jan van Langevelde; Daniel R. van Rossum; Jan Wagner; Derek Ward-Thompson; John Wardle; Jonathan Weintroub; Norbert Wex; Robert Wharton; Maciek Wielgus; George N. Wong; Qingwen Wu; Doosoo Yoon; André Young; Ken Young; Ziri Younsi; Feng Yuan; Ye-Fei Yuan; J. Anton Zensus; Guang-Yao Zhao; Shan-Shan Zhao
<jats:title>Abstract</jats:title> <jats:p>In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of ∼15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L12
First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon
Kazunori Akiyama; Juan Carlos Algaba; Antxon Alberdi; Walter Alef; Richard Anantua; Keiichi Asada; Rebecca Azulay; Anne-Kathrin Baczko; David Ball; Mislav Baloković; John Barrett; Bradford A. Benson; Dan Bintley; Lindy Blackburn; Raymond Blundell; Wilfred Boland; Katherine L. Bouman; Geoffrey C. Bower; Hope Boyce; Michael Bremer; Christiaan D. Brinkerink; Roger Brissenden; Silke Britzen; Avery E. Broderick; Dominique Broguiere; Thomas Bronzwaer; Do-Young Byun; John E. Carlstrom; Andrew Chael; Chi-kwan Chan; Shami Chatterjee; Koushik Chatterjee; Ming-Tang Chen; Yongjun Chen; Paul M. Chesler; Ilje Cho; Pierre Christian; John E. Conway; James M. Cordes; Thomas M. Crawford; Geoffrey B. Crew; Alejandro Cruz-Osorio; Yuzhu Cui; Jordy Davelaar; Mariafelicia De Laurentis; Roger Deane; Jessica Dempsey; Gregory Desvignes; Jason Dexter; Sheperd S. Doeleman; Ralph P. Eatough; Heino Falcke; Joseph Farah; Vincent L. Fish; Ed Fomalont; H. Alyson Ford; Raquel Fraga-Encinas; Per Friberg; Christian M. Fromm; Antonio Fuentes; Peter Galison; Charles F. Gammie; Roberto García; Zachary Gelles; Olivier Gentaz; Boris Georgiev; Ciriaco Goddi; Roman Gold; José L. Gómez; Arturo I. Gómez-Ruiz; Minfeng Gu; Mark Gurwell; Kazuhiro Hada; Daryl Haggard; Michael H. Hecht; Ronald Hesper; Elizabeth Himwich; Luis C. Ho; Paul Ho; Mareki Honma; Chih-Wei L. Huang; Lei Huang; David H. Hughes; Shiro Ikeda; Makoto Inoue; Sara Issaoun; David J. James; Buell T. Jannuzi; Michael Janssen; Britton Jeter; Wu Jiang; Alejandra Jimenez-Rosales; Michael D. Johnson; Svetlana Jorstad; Taehyun Jung; Mansour Karami; Ramesh Karuppusamy; Tomohisa Kawashima; Garrett K. Keating; Mark Kettenis; Dong-Jin Kim; Jae-Young Kim; Jongsoo Kim; Junhan Kim; Motoki Kino; Jun Yi Koay; Yutaro Kofuji; Patrick M. Koch; Shoko Koyama; Michael Kramer; Carsten Kramer; Thomas P. Krichbaum; Cheng-Yu Kuo; Tod R. Lauer; Sang-Sung Lee; Aviad Levis; Yan-Rong Li; Zhiyuan Li; Michael Lindqvist; Rocco Lico; Greg Lindahl; Jun Liu; Kuo Liu; Elisabetta Liuzzo; Wen-Ping Lo; Andrei P. Lobanov; Laurent Loinard; Colin Lonsdale; Ru-Sen Lu; Nicholas R. MacDonald; Jirong Mao; Nicola Marchili; Sera Markoff; Daniel P. Marrone; Alan P. Marscher; Iván Martí-Vidal; Satoki Matsushita; Lynn D. Matthews; Lia Medeiros; Karl M. Menten; Izumi Mizuno; Yosuke Mizuno; James M. Moran; Kotaro Moriyama; Monika Moscibrodzka; Cornelia Müller; Gibwa Musoke; Alejandro Mus Mejías; Daniel Michalik; Andrew Nadolski; Hiroshi Nagai; Neil M. Nagar; Masanori Nakamura; Ramesh Narayan; Gopal Narayanan; Iniyan Natarajan; Antonios Nathanail; Joey Neilsen; Roberto Neri; Chunchong Ni; Aristeidis Noutsos; Michael A. Nowak; Hiroki Okino; Héctor Olivares; Gisela N. Ortiz-León; Tomoaki Oyama; Feryal Özel; Daniel C. M. Palumbo; Jongho Park; Nimesh Patel; Ue-Li Pen; Dominic W. Pesce; Vincent Piétu; Richard Plambeck; Aleksandar PopStefanija; Oliver Porth; Felix M. Pötzl; Ben Prather; Jorge A. Preciado-López; Dimitrios Psaltis; Hung-Yi Pu; Venkatessh Ramakrishnan; Ramprasad Rao; Mark G. Rawlings; Alexander W. Raymond; Luciano Rezzolla; Angelo Ricarte; Bart Ripperda; Freek Roelofs; Alan Rogers; Eduardo Ros; Mel Rose; Arash Roshanineshat; Helge Rottmann; Alan L. Roy; Chet Ruszczyk; Kazi L. J. Rygl; Salvador Sánchez; David Sánchez-Arguelles; Mahito Sasada; Tuomas Savolainen; F. Peter Schloerb; Karl-Friedrich Schuster; Lijing Shao; Zhiqiang Shen; Des Small; Bong Won Sohn; Jason SooHoo; He Sun; Fumie Tazaki; Alexandra J. Tetarenko; Paul Tiede; Remo P. J. Tilanus; Michael Titus; Kenji Toma; Pablo Torne; Tyler Trent; Efthalia Traianou; Sascha Trippe; Ilse van Bemmel; Huib Jan van Langevelde; Daniel R. van Rossum; Jan Wagner; Derek Ward-Thompson; John Wardle; Jonathan Weintroub; Norbert Wex; Robert Wharton; Maciek Wielgus; George N. Wong; Qingwen Wu; Doosoo Yoon; André Young; Ken Young; Ziri Younsi; Feng Yuan; Ye-Fei Yuan; J. Anton Zensus; Guang-Yao Zhao; Shan-Shan Zhao
<jats:title>Abstract</jats:title> <jats:p>Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density <jats:italic>n</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> ∼ 10<jats:sup>4–7</jats:sup> cm<jats:sup>−3</jats:sup>, magnetic field strength <jats:italic>B</jats:italic> ∼ 1–30 G, and electron temperature <jats:italic>T</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> ∼ (1–12) × 10<jats:sup>10</jats:sup> K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3–20) × 10<jats:sup>−4</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup>.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L13
Polarimetric Properties of Event Horizon Telescope Targets from ALMA
Ciriaco Goddi; Iván Martí-Vidal; Hugo Messias; Geoffrey C. Bower; Avery E. Broderick; Jason Dexter; Daniel P. Marrone; Monika Moscibrodzka; Hiroshi Nagai; Juan Carlos Algaba; Keiichi Asada; Geoffrey B. Crew; José L. Gómez; C. M. Violette Impellizzeri; Michael Janssen; Matthias Kadler; Thomas P. Krichbaum; Rocco Lico; Lynn D. Matthews; Antonios Nathanail; Angelo Ricarte; Eduardo Ros; Ziri Younsi; Kazunori Akiyama; Antxon Alberdi; Walter Alef; Richard Anantua; Rebecca Azulay; Anne-Kathrin Baczko; David Ball; Mislav Baloković; John Barrett; Bradford A. Benson; Dan Bintley; Lindy Blackburn; Raymond Blundell; Wilfred Boland; Katherine L. Bouman; Hope Boyce; Michael Bremer; Christiaan D. Brinkerink; Roger Brissenden; Silke Britzen; Dominique Broguiere; Thomas Bronzwaer; Do-Young Byun; John E. Carlstrom; Andrew Chael; Chi-kwan Chan; Shami Chatterjee; Koushik Chatterjee; Ming-Tang Chen; Yongjun Chen; Paul M. Chesler; Ilje Cho; Pierre Christian; John E. Conway; James M. Cordes; Thomas M. Crawford; Alejandro Cruz-Osorio; Yuzhu Cui; Jordy Davelaar; Mariafelicia De Laurentis; Roger Deane; Jessica Dempsey; Gregory Desvignes; Sheperd S. Doeleman; Ralph P. Eatough; Heino Falcke; Joseph Farah; Vincent L. Fish; Ed Fomalont; H. Alyson Ford; Raquel Fraga-Encinas; William T. Freeman; Per Friberg; Christian M. Fromm; Antonio Fuentes; Peter Galison; Charles F. Gammie; Roberto García; Olivier Gentaz; Boris Georgiev; Roman Gold; Arturo I. Gómez-Ruiz; Minfeng Gu; Mark Gurwell; Kazuhiro Hada; Daryl Haggard; Michael H. Hecht; Ronald Hesper; Luis C. Ho; Paul Ho; Mareki Honma; Chih-Wei L. Huang; Lei Huang; David H. Hughes; Makoto Inoue; Sara Issaoun; David J. James; Buell T. Jannuzi; Britton Jeter; Wu Jiang; Alejandra Jimenez-Rosales; Michael D. Johnson; Svetlana Jorstad; Taehyun Jung; Mansour Karami; Ramesh Karuppusamy; Tomohisa Kawashima; Garrett K. Keating; Mark Kettenis; Dong-Jin Kim; Jae-Young Kim; Jongsoo Kim; Junhan Kim; Motoki Kino; Jun Yi Koay; Yutaro Kofuji; Patrick M. Koch; Shoko Koyama; Michael Kramer; Carsten Kramer; Cheng-Yu Kuo; Tod R. Lauer; Sang-Sung Lee; Aviad Levis; Yan-Rong Li; Zhiyuan Li; Michael Lindqvist; Greg Lindahl; Jun Liu; Kuo Liu; Elisabetta Liuzzo; Wen-Ping Lo; Andrei P. Lobanov; Laurent Loinard; Colin Lonsdale; Ru-Sen Lu; Nicholas R. MacDonald; Jirong Mao; Nicola Marchili; Sera Markoff; Alan P. Marscher; Satoki Matsushita; Lia Medeiros; Karl M. Menten; Izumi Mizuno; Yosuke Mizuno; James M. Moran; Kotaro Moriyama; Cornelia Müller; Gibwa Musoke; Alejandro Mus Mejías; Neil M. Nagar; Masanori Nakamura; Ramesh Narayan; Gopal Narayanan; Iniyan Natarajan; Joey Neilsen; Roberto Neri; Chunchong Ni; Aristeidis Noutsos; Michael A. Nowak; Hiroki Okino; Héctor Olivares; Gisela N. Ortiz-León; Tomoaki Oyama; Feryal Özel; Daniel C. M. Palumbo; Jongho Park; Nimesh Patel; Ue-Li Pen; Dominic W. Pesce; Vincent Piétu; Richard Plambeck; Aleksandar PopStefanija; Oliver Porth; Felix M. Pötzl; Ben Prather; Jorge A. Preciado-López; Dimitrios Psaltis; Hung-Yi Pu; Venkatessh Ramakrishnan; Ramprasad Rao; Mark G. Rawlings; Alexander W. Raymond; Luciano Rezzolla; Bart Ripperda; Freek Roelofs; Alan Rogers; Mel Rose; Arash Roshanineshat; Helge Rottmann; Alan L. Roy; Chet Ruszczyk; Kazi L. J. Rygl; Salvador Sánchez; David Sánchez-Arguelles; Mahito Sasada; Tuomas Savolainen; F. Peter Schloerb; Karl-Friedrich Schuster; Lijing Shao; Zhiqiang Shen; Des Small; Bong Won Sohn; Jason SooHoo; He Sun; Fumie Tazaki; Alexandra J. Tetarenko; Paul Tiede; Remo P. J. Tilanus; Michael Titus; Kenji Toma; Pablo Torne; Tyler Trent; Efthalia Traianou; Sascha Trippe; Ilse van Bemmel; Huib Jan van Langevelde; Daniel R. van Rossum; Jan Wagner; Derek Ward-Thompson; John Wardle; Jonathan Weintroub; Norbert Wex; Robert Wharton; Maciek Wielgus; George N. Wong; Qingwen Wu; Doosoo Yoon; André Young; Ken Young; Feng Yuan; Ye-Fei Yuan; J. Anton Zensus; Guang-Yao Zhao; Shan-Shan Zhao; Gabriele Bruni; A. Gopakumar; Antonio Hernández-Gómez; Ruben Herrero-Illana; Adam Ingram; S. Komossa; Y. Y. Kovalev; Dirk Muders; Manel Perucho; Florian Rösch; Mauri Valtonen
<jats:title>Abstract</jats:title> <jats:p>We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the <jats:italic>λ</jats:italic>3 mm and <jats:italic>λ</jats:italic>1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 10<jats:sup>3.3</jats:sup>–10<jats:sup>5.5</jats:sup> rad m<jats:sup>−2</jats:sup>), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 3 mm and −4.1 to 1.5 × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L14
Interstellar Detection of 2-cyanocyclopentadiene, C5H5CN, a Second Five-membered Ring toward TMC-1
Kin Long Kelvin Lee; P. Bryan Changala; Ryan A. Loomis; Andrew M. Burkhardt; Ci Xue; Martin A. Cordiner; Steven B. Charnley; Michael C. McCarthy; Brett A. McGuire
<jats:title>Abstract</jats:title> <jats:p>Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spectral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov Chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yield a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23–32 GHz. Through our MCMC analysis, we derive cospatial, total column densities of 8.3 × 10<jats:sup>11</jats:sup> and 1.9 × 10<jats:sup>11</jats:sup> cm<jats:sup>−2</jats:sup> for 1- and 2-cyanocyclopentadiene, respectively, corresponding to a ratio of ∼4.4 favoring the former. The derived abundance ratios point toward a common formation pathway—most likely being cyanation of cyclopentadiene by analogy to benzonitrile.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L2