Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Identification of Active Magnetic Reconnection Using Magnetic Flux Transport in Plasma Turbulence

Tak Chu LiORCID; Yi-Hsin LiuORCID; Yi QiORCID

<jats:title>Abstract</jats:title> <jats:p>Magnetic reconnection has been suggested to play an important role in the dynamics and energetics of plasma turbulence by spacecraft observations, simulations, and theory over the past two decades, and recently, by magnetosheath observations of MMS. A new method based on magnetic flux transport (MFT) has been developed to identify reconnection activity in turbulent plasmas. This method is applied to a gyrokinetic simulation of two-dimensional (2D) plasma turbulence. Results on the identification of three active reconnection X-points are reported. The first two X-points have developed bidirectional electron outflow jets. Beyond the category of electron-only reconnection, the third X-point does not have bidirectional electron outflow jets because the flow is modified by turbulence. In all cases, this method successfully identifies active reconnection through clear inward and outward flux transport around the X-points. This transport pattern defines reconnection and produces a new quadrupolar structure in the divergence of MFT. This method is expected to be applicable to spacecraft missions such as MMS, Parker Solar Probe, and Solar Orbiter.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L28

A CO Survey of SpARCS Star-forming Brightest Cluster Galaxies: Evidence for Uniformity in BCG Molecular Gas Processing across Cosmic Time

Delaney A. DunneORCID; Tracy M. A. WebbORCID; Allison NobleORCID; Christopher LidmanORCID; Heath Shipley; Adam MuzzinORCID; Gillian Wilson; H. K. C. YeeORCID

<jats:title>Abstract</jats:title> <jats:p>We present ALMA CO (2-1) detections of 24 star-forming brightest cluster galaxies (BCGs) over 0.2 &lt; <jats:italic>z</jats:italic> &lt; 1.2, constituting the largest and most distant sample of molecular gas measurements in BCGs to date. The BCGs are selected from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) to be IR-bright and therefore star-forming. We find that molecular gas is common in star-forming BCGs, detecting CO at a detection rate of 80% in our target sample of 30 objects. We additionally provide measurements of the star formation rate and stellar mass, calculated from existing MIPS 24 <jats:italic>μ</jats:italic>m and IRAC 3.6 <jats:italic>μ</jats:italic>m fluxes, respectively. We find these galaxies have molecular gas masses of 0.7–11.0 × 10<jats:sup>10</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, comparable to other BCGs in this redshift range, and specific star formation rates that trace the main sequence of Elbaz et al. We compare our BCGs to those of the lower-redshift, cooling-flow BCG sample assembled by Edge and find that at <jats:italic>z</jats:italic> ≲ 0.6 the two samples show very similar correlations between their gas masses and specific SFRs. We suggest that, in this redshift regime, the ∼10% of BCGs that are star-forming process accreted molecular gas into stars through means that are agnostic to both their redshift and their cluster mass.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L29

Erratum: “Wandering Supermassive Black Holes in Milky-Way-mass Halos” (2018, ApJL, 857, L22)

Michael TremmelORCID; Fabio Governato; Marta VolonteriORCID; Andrew PontzenORCID; Thomas R. Quinn

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L30

S0-2 Star, G1- and G2-objects, and Flaring Activity of the Milky Way’s Galactic Center Black Hole in 2019

Lena MurchikovaORCID

<jats:title>Abstract</jats:title> <jats:p>In 2019, the Galactic center black hole Sgr A* produced an unusually high number of bright near-infrared flares, including the brightest-ever detected flare. We propose that this activity was triggered by the near simultaneous infall of material shed by G1 and G2 objects due to their interaction with the background accretion flow. We discuss mechanisms by which S-stars and G-objects shed material, and estimate both the quantity of material and the infall time to reach the black hole.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L1

3D Solar Coronal Loop Reconstructions with Machine Learning

Iulia ChifuORCID; Ricardo GafeiraORCID

<jats:title>Abstract</jats:title> <jats:p>The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona. The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to ascertain the 3D structure of the coronal magnetic field is by performing magnetic field extrapolations from the photosphere to the corona. In previous work, it was shown that by prescribing the 3D-reconstructed loops’ geometry, the magnetic field extrapolation produces a solution with a better agreement between the modeled field and the reconstructed loops. This also improves the quality of the field extrapolation. Stereoscopy, which uses at least two view directions, is the traditional method for performing 3D coronal loop reconstruction. When only one vantage point of the coronal loops is available, other 3D reconstruction methods must be applied. Within this work, we present a method for the 3D loop reconstruction based on machine learning. Our purpose for developing this method is to use as many observed coronal loops in space and time for the modeling of the coronal magnetic field. Our results show that we can build machine-learning models that can retrieve 3D loops based only on their projection information. Ultimately, the neural network model will be able to use only 2D information of the coronal loops, identified, traced, and extracted from the extreme-ultraviolet images, for the calculation of their 3D geometry.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L10

Pure Density Evolution of the Ultraviolet Quasar Luminosity Function at 2 ≲ z ≲ 6

Yongjung KimORCID; Myungshin ImORCID

<jats:title>Abstract</jats:title> <jats:p>The quasar luminosity function (QLF) shows the active galactic nucleus (AGN) demography as a result of the combination of the growth and the evolution of black holes, galaxies, and dark matter halos along the cosmic time. The recent wide and deep surveys have improved the census of high-redshift quasars, making it possible to construct reliable ultraviolet (UV) QLFs at 2 ≲ <jats:italic>z</jats:italic> ≲ 6 down to <jats:italic>M</jats:italic> <jats:sub>1450</jats:sub> = − 23 mag. By parameterizing these up-to-date observed UV QLFs that are the most extensive in both luminosity and survey area coverage at a given redshift, we show that the UV QLF has a universal shape and its evolution can be approximated by a pure density evolution (PDE). In order to explain the observed QLF, we construct a model QLF employing the halo mass function, a number of empirical scaling relations, and the Eddington ratio distribution. We also include the outshining of AGN over its host galaxy, which made it possible to reproduce a moderately flat shape of the faint end of the observed QLF (slope of ∼ − 1.1). This model successfully explains the observed PDE behavior of UV QLF at <jats:italic>z</jats:italic> &gt; 2, meaning that the QLF evolution at high redshift can be understood under the framework of halo mass function evolution. The importance of the outshining effect in our model also implies that there could be a hidden population of faint AGNs (<jats:italic>M</jats:italic> <jats:sub>1450</jats:sub> ≳ − 24 mag), which are buried under their host galaxy light.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L11

First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

Kazunori AkiyamaORCID; Juan Carlos AlgabaORCID; Antxon AlberdiORCID; Walter Alef; Richard AnantuaORCID; Keiichi Asada; Rebecca AzulayORCID; Anne-Kathrin BaczkoORCID; David Ball; Mislav BalokovićORCID; John BarrettORCID; Bradford A. BensonORCID; Dan Bintley; Lindy BlackburnORCID; Raymond BlundellORCID; Wilfred Boland; Katherine L. BoumanORCID; Geoffrey C. BowerORCID; Hope BoyceORCID; Michael Bremer; Christiaan D. BrinkerinkORCID; Roger BrissendenORCID; Silke BritzenORCID; Avery E. BroderickORCID; Dominique Broguiere; Thomas Bronzwaer; Do-Young ByunORCID; John E. Carlstrom; Andrew ChaelORCID; Chi-kwan ChanORCID; Shami ChatterjeeORCID; Koushik ChatterjeeORCID; Ming-Tang Chen; Yongjun Chen; Paul M. CheslerORCID; Ilje ChoORCID; Pierre ChristianORCID; John E. ConwayORCID; James M. CordesORCID; Thomas M. CrawfordORCID; Geoffrey B. CrewORCID; Alejandro Cruz-OsorioORCID; Yuzhu CuiORCID; Jordy DavelaarORCID; Mariafelicia De LaurentisORCID; Roger DeaneORCID; Jessica DempseyORCID; Gregory DesvignesORCID; Jason DexterORCID; Sheperd S. DoelemanORCID; Ralph P. EatoughORCID; Heino FalckeORCID; Joseph FarahORCID; Vincent L. FishORCID; Ed FomalontORCID; H. Alyson FordORCID; Raquel Fraga-EncinasORCID; William T. Freeman; Per FribergORCID; Christian M. Fromm; Antonio FuentesORCID; Peter GalisonORCID; Charles F. GammieORCID; Roberto GarcíaORCID; Olivier Gentaz; Boris GeorgievORCID; Ciriaco GoddiORCID; Roman GoldORCID; José L. GómezORCID; Arturo I. Gómez-RuizORCID; Minfeng GuORCID; Mark GurwellORCID; Kazuhiro HadaORCID; Daryl HaggardORCID; Michael H. Hecht; Ronald HesperORCID; Luis C. HoORCID; Paul Ho; Mareki HonmaORCID; Chih-Wei L. HuangORCID; Lei Huang; David H. Hughes; Shiro IkedaORCID; Makoto Inoue; Sara IssaounORCID; David J. JamesORCID; Buell T. Jannuzi; Michael JanssenORCID; Britton JeterORCID; Wu JiangORCID; Alejandra Jimenez-Rosales; Michael D. JohnsonORCID; Svetlana JorstadORCID; Taehyun JungORCID; Mansour KaramiORCID; Ramesh KaruppusamyORCID; Tomohisa KawashimaORCID; Garrett K. KeatingORCID; Mark KettenisORCID; Dong-Jin KimORCID; Jae-Young KimORCID; Jongsoo KimORCID; Junhan KimORCID; Motoki KinoORCID; Jun Yi KoayORCID; Yutaro Kofuji; Patrick M. KochORCID; Shoko KoyamaORCID; Michael KramerORCID; Carsten KramerORCID; Thomas P. KrichbaumORCID; Cheng-Yu KuoORCID; Tod R. LauerORCID; Sang-Sung LeeORCID; Aviad LevisORCID; Yan-Rong LiORCID; Zhiyuan LiORCID; Michael LindqvistORCID; Rocco LicoORCID; Greg LindahlORCID; Jun LiuORCID; Kuo LiuORCID; Elisabetta LiuzzoORCID; Wen-Ping Lo; Andrei P. Lobanov; Laurent LoinardORCID; Colin Lonsdale; Ru-Sen LuORCID; Nicholas R. MacDonaldORCID; Jirong MaoORCID; Nicola MarchiliORCID; Sera MarkoffORCID; Daniel P. MarroneORCID; Alan P. MarscherORCID; Iván Martí-VidalORCID; Satoki MatsushitaORCID; Lynn D. MatthewsORCID; Lia MedeirosORCID; Karl M. MentenORCID; Izumi MizunoORCID; Yosuke MizunoORCID; James M. MoranORCID; Kotaro MoriyamaORCID; Monika MoscibrodzkaORCID; Cornelia MüllerORCID; Gibwa MusokeORCID; Alejandro Mus MejíasORCID; Daniel MichalikORCID; Andrew NadolskiORCID; Hiroshi NagaiORCID; Neil M. NagarORCID; Masanori NakamuraORCID; Ramesh NarayanORCID; Gopal Narayanan; Iniyan NatarajanORCID; Antonios Nathanail; Joey NeilsenORCID; Roberto NeriORCID; Chunchong NiORCID; Aristeidis NoutsosORCID; Michael A. NowakORCID; Hiroki Okino; Héctor OlivaresORCID; Gisela N. Ortiz-LeónORCID; Tomoaki Oyama; Feryal Özel; Daniel C. M. PalumboORCID; Jongho ParkORCID; Nimesh Patel; Ue-Li PenORCID; Dominic W. PesceORCID; Vincent Piétu; Richard PlambeckORCID; Aleksandar PopStefanija; Oliver PorthORCID; Felix M. PötzlORCID; Ben PratherORCID; Jorge A. Preciado-LópezORCID; Dimitrios Psaltis; Hung-Yi PuORCID; Venkatessh RamakrishnanORCID; Ramprasad RaoORCID; Mark G. RawlingsORCID; Alexander W. RaymondORCID; Luciano RezzollaORCID; Angelo RicarteORCID; Bart RipperdaORCID; Freek RoelofsORCID; Alan Rogers; Eduardo RosORCID; Mel RoseORCID; Arash Roshanineshat; Helge Rottmann; Alan L. RoyORCID; Chet RuszczykORCID; Kazi L. J. RyglORCID; Salvador Sánchez; David Sánchez-ArguellesORCID; Mahito SasadaORCID; Tuomas SavolainenORCID; F. Peter Schloerb; Karl-Friedrich SchusterORCID; Lijing ShaoORCID; Zhiqiang ShenORCID; Des SmallORCID; Bong Won SohnORCID; Jason SooHooORCID; He SunORCID; Fumie TazakiORCID; Alexandra J. TetarenkoORCID; Paul TiedeORCID; Remo P. J. TilanusORCID; Michael TitusORCID; Kenji TomaORCID; Pablo TorneORCID; Tyler Trent; Efthalia TraianouORCID; Sascha TrippeORCID; Ilse van BemmelORCID; Huib Jan van LangeveldeORCID; Daniel R. van RossumORCID; Jan WagnerORCID; Derek Ward-ThompsonORCID; John WardleORCID; Jonathan WeintroubORCID; Norbert WexORCID; Robert WhartonORCID; Maciek WielgusORCID; George N. WongORCID; Qingwen WuORCID; Doosoo YoonORCID; André YoungORCID; Ken YoungORCID; Ziri YounsiORCID; Feng YuanORCID; Ye-Fei YuanORCID; J. Anton ZensusORCID; Guang-Yao ZhaoORCID; Shan-Shan ZhaoORCID

<jats:title>Abstract</jats:title> <jats:p>In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of ∼15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L12

First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon

Kazunori AkiyamaORCID; Juan Carlos AlgabaORCID; Antxon AlberdiORCID; Walter Alef; Richard AnantuaORCID; Keiichi Asada; Rebecca AzulayORCID; Anne-Kathrin BaczkoORCID; David Ball; Mislav BalokovićORCID; John BarrettORCID; Bradford A. BensonORCID; Dan Bintley; Lindy BlackburnORCID; Raymond BlundellORCID; Wilfred Boland; Katherine L. BoumanORCID; Geoffrey C. BowerORCID; Hope BoyceORCID; Michael Bremer; Christiaan D. BrinkerinkORCID; Roger BrissendenORCID; Silke BritzenORCID; Avery E. BroderickORCID; Dominique Broguiere; Thomas Bronzwaer; Do-Young ByunORCID; John E. Carlstrom; Andrew ChaelORCID; Chi-kwan ChanORCID; Shami ChatterjeeORCID; Koushik ChatterjeeORCID; Ming-Tang Chen; Yongjun Chen; Paul M. CheslerORCID; Ilje ChoORCID; Pierre ChristianORCID; John E. ConwayORCID; James M. CordesORCID; Thomas M. CrawfordORCID; Geoffrey B. CrewORCID; Alejandro Cruz-OsorioORCID; Yuzhu CuiORCID; Jordy DavelaarORCID; Mariafelicia De LaurentisORCID; Roger DeaneORCID; Jessica DempseyORCID; Gregory DesvignesORCID; Jason DexterORCID; Sheperd S. DoelemanORCID; Ralph P. EatoughORCID; Heino FalckeORCID; Joseph FarahORCID; Vincent L. FishORCID; Ed FomalontORCID; H. Alyson FordORCID; Raquel Fraga-EncinasORCID; Per FribergORCID; Christian M. Fromm; Antonio FuentesORCID; Peter GalisonORCID; Charles F. GammieORCID; Roberto GarcíaORCID; Zachary GellesORCID; Olivier Gentaz; Boris GeorgievORCID; Ciriaco GoddiORCID; Roman GoldORCID; José L. GómezORCID; Arturo I. Gómez-RuizORCID; Minfeng GuORCID; Mark GurwellORCID; Kazuhiro HadaORCID; Daryl HaggardORCID; Michael H. Hecht; Ronald HesperORCID; Elizabeth Himwich; Luis C. HoORCID; Paul Ho; Mareki HonmaORCID; Chih-Wei L. HuangORCID; Lei HuangORCID; David H. Hughes; Shiro IkedaORCID; Makoto Inoue; Sara IssaounORCID; David J. JamesORCID; Buell T. Jannuzi; Michael JanssenORCID; Britton JeterORCID; Wu JiangORCID; Alejandra Jimenez-RosalesORCID; Michael D. JohnsonORCID; Svetlana JorstadORCID; Taehyun JungORCID; Mansour KaramiORCID; Ramesh KaruppusamyORCID; Tomohisa KawashimaORCID; Garrett K. KeatingORCID; Mark KettenisORCID; Dong-Jin KimORCID; Jae-Young KimORCID; Jongsoo KimORCID; Junhan KimORCID; Motoki KinoORCID; Jun Yi KoayORCID; Yutaro Kofuji; Patrick M. KochORCID; Shoko KoyamaORCID; Michael KramerORCID; Carsten KramerORCID; Thomas P. KrichbaumORCID; Cheng-Yu KuoORCID; Tod R. LauerORCID; Sang-Sung LeeORCID; Aviad LevisORCID; Yan-Rong LiORCID; Zhiyuan LiORCID; Michael LindqvistORCID; Rocco LicoORCID; Greg LindahlORCID; Jun LiuORCID; Kuo LiuORCID; Elisabetta LiuzzoORCID; Wen-Ping Lo; Andrei P. Lobanov; Laurent LoinardORCID; Colin Lonsdale; Ru-Sen LuORCID; Nicholas R. MacDonaldORCID; Jirong MaoORCID; Nicola MarchiliORCID; Sera MarkoffORCID; Daniel P. MarroneORCID; Alan P. MarscherORCID; Iván Martí-VidalORCID; Satoki MatsushitaORCID; Lynn D. MatthewsORCID; Lia MedeirosORCID; Karl M. MentenORCID; Izumi MizunoORCID; Yosuke MizunoORCID; James M. MoranORCID; Kotaro MoriyamaORCID; Monika MoscibrodzkaORCID; Cornelia MüllerORCID; Gibwa MusokeORCID; Alejandro Mus MejíasORCID; Daniel MichalikORCID; Andrew NadolskiORCID; Hiroshi NagaiORCID; Neil M. NagarORCID; Masanori NakamuraORCID; Ramesh NarayanORCID; Gopal Narayanan; Iniyan NatarajanORCID; Antonios Nathanail; Joey NeilsenORCID; Roberto NeriORCID; Chunchong NiORCID; Aristeidis NoutsosORCID; Michael A. NowakORCID; Hiroki Okino; Héctor OlivaresORCID; Gisela N. Ortiz-LeónORCID; Tomoaki Oyama; Feryal Özel; Daniel C. M. PalumboORCID; Jongho ParkORCID; Nimesh Patel; Ue-Li PenORCID; Dominic W. PesceORCID; Vincent Piétu; Richard PlambeckORCID; Aleksandar PopStefanija; Oliver PorthORCID; Felix M. PötzlORCID; Ben PratherORCID; Jorge A. Preciado-LópezORCID; Dimitrios PsaltisORCID; Hung-Yi PuORCID; Venkatessh RamakrishnanORCID; Ramprasad RaoORCID; Mark G. RawlingsORCID; Alexander W. RaymondORCID; Luciano RezzollaORCID; Angelo RicarteORCID; Bart RipperdaORCID; Freek RoelofsORCID; Alan Rogers; Eduardo RosORCID; Mel RoseORCID; Arash Roshanineshat; Helge Rottmann; Alan L. RoyORCID; Chet RuszczykORCID; Kazi L. J. RyglORCID; Salvador Sánchez; David Sánchez-ArguellesORCID; Mahito SasadaORCID; Tuomas SavolainenORCID; F. Peter Schloerb; Karl-Friedrich Schuster; Lijing ShaoORCID; Zhiqiang ShenORCID; Des SmallORCID; Bong Won SohnORCID; Jason SooHooORCID; He SunORCID; Fumie TazakiORCID; Alexandra J. TetarenkoORCID; Paul TiedeORCID; Remo P. J. TilanusORCID; Michael TitusORCID; Kenji TomaORCID; Pablo TorneORCID; Tyler Trent; Efthalia TraianouORCID; Sascha TrippeORCID; Ilse van BemmelORCID; Huib Jan van LangeveldeORCID; Daniel R. van RossumORCID; Jan WagnerORCID; Derek Ward-ThompsonORCID; John WardleORCID; Jonathan WeintroubORCID; Norbert Wex; Robert WhartonORCID; Maciek WielgusORCID; George N. WongORCID; Qingwen WuORCID; Doosoo YoonORCID; André YoungORCID; Ken YoungORCID; Ziri YounsiORCID; Feng YuanORCID; Ye-Fei Yuan; J. Anton ZensusORCID; Guang-Yao ZhaoORCID; Shan-Shan ZhaoORCID

<jats:title>Abstract</jats:title> <jats:p>Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density <jats:italic>n</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> ∼ 10<jats:sup>4–7</jats:sup> cm<jats:sup>−3</jats:sup>, magnetic field strength <jats:italic>B</jats:italic> ∼ 1–30 G, and electron temperature <jats:italic>T</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> ∼ (1–12) × 10<jats:sup>10</jats:sup> K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3–20) × 10<jats:sup>−4</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup>.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L13

Polarimetric Properties of Event Horizon Telescope Targets from ALMA

Ciriaco GoddiORCID; Iván Martí-VidalORCID; Hugo MessiasORCID; Geoffrey C. BowerORCID; Avery E. BroderickORCID; Jason DexterORCID; Daniel P. MarroneORCID; Monika MoscibrodzkaORCID; Hiroshi NagaiORCID; Juan Carlos AlgabaORCID; Keiichi Asada; Geoffrey B. CrewORCID; José L. GómezORCID; C. M. Violette ImpellizzeriORCID; Michael JanssenORCID; Matthias KadlerORCID; Thomas P. KrichbaumORCID; Rocco LicoORCID; Lynn D. MatthewsORCID; Antonios Nathanail; Angelo RicarteORCID; Eduardo RosORCID; Ziri YounsiORCID; Kazunori AkiyamaORCID; Antxon AlberdiORCID; Walter Alef; Richard AnantuaORCID; Rebecca AzulayORCID; Anne-Kathrin BaczkoORCID; David Ball; Mislav BalokovićORCID; John BarrettORCID; Bradford A. BensonORCID; Dan Bintley; Lindy BlackburnORCID; Raymond BlundellORCID; Wilfred Boland; Katherine L. BoumanORCID; Hope BoyceORCID; Michael Bremer; Christiaan D. BrinkerinkORCID; Roger BrissendenORCID; Silke BritzenORCID; Dominique Broguiere; Thomas Bronzwaer; Do-Young ByunORCID; John E. Carlstrom; Andrew ChaelORCID; Chi-kwan ChanORCID; Shami ChatterjeeORCID; Koushik ChatterjeeORCID; Ming-Tang Chen; Yongjun Chen; Paul M. CheslerORCID; Ilje ChoORCID; Pierre ChristianORCID; John E. ConwayORCID; James M. CordesORCID; Thomas M. CrawfordORCID; Alejandro Cruz-OsorioORCID; Yuzhu CuiORCID; Jordy DavelaarORCID; Mariafelicia De LaurentisORCID; Roger DeaneORCID; Jessica DempseyORCID; Gregory DesvignesORCID; Sheperd S. DoelemanORCID; Ralph P. EatoughORCID; Heino FalckeORCID; Joseph FarahORCID; Vincent L. FishORCID; Ed FomalontORCID; H. Alyson FordORCID; Raquel Fraga-EncinasORCID; William T. Freeman; Per FribergORCID; Christian M. Fromm; Antonio FuentesORCID; Peter GalisonORCID; Charles F. GammieORCID; Roberto GarcíaORCID; Olivier Gentaz; Boris GeorgievORCID; Roman GoldORCID; Arturo I. Gómez-RuizORCID; Minfeng GuORCID; Mark GurwellORCID; Kazuhiro HadaORCID; Daryl HaggardORCID; Michael H. Hecht; Ronald HesperORCID; Luis C. HoORCID; Paul Ho; Mareki HonmaORCID; Chih-Wei L. HuangORCID; Lei HuangORCID; David H. Hughes; Makoto Inoue; Sara IssaounORCID; David J. JamesORCID; Buell T. Jannuzi; Britton JeterORCID; Wu JiangORCID; Alejandra Jimenez-Rosales; Michael D. JohnsonORCID; Svetlana JorstadORCID; Taehyun JungORCID; Mansour KaramiORCID; Ramesh KaruppusamyORCID; Tomohisa KawashimaORCID; Garrett K. KeatingORCID; Mark KettenisORCID; Dong-Jin KimORCID; Jae-Young KimORCID; Jongsoo KimORCID; Junhan KimORCID; Motoki KinoORCID; Jun Yi KoayORCID; Yutaro Kofuji; Patrick M. KochORCID; Shoko KoyamaORCID; Michael KramerORCID; Carsten KramerORCID; Cheng-Yu KuoORCID; Tod R. LauerORCID; Sang-Sung LeeORCID; Aviad LevisORCID; Yan-Rong LiORCID; Zhiyuan LiORCID; Michael LindqvistORCID; Greg LindahlORCID; Jun LiuORCID; Kuo LiuORCID; Elisabetta LiuzzoORCID; Wen-Ping Lo; Andrei P. Lobanov; Laurent LoinardORCID; Colin Lonsdale; Ru-Sen LuORCID; Nicholas R. MacDonaldORCID; Jirong MaoORCID; Nicola MarchiliORCID; Sera MarkoffORCID; Alan P. MarscherORCID; Satoki MatsushitaORCID; Lia MedeirosORCID; Karl M. MentenORCID; Izumi MizunoORCID; Yosuke MizunoORCID; James M. MoranORCID; Kotaro MoriyamaORCID; Cornelia MüllerORCID; Gibwa MusokeORCID; Alejandro Mus MejíasORCID; Neil M. NagarORCID; Masanori NakamuraORCID; Ramesh NarayanORCID; Gopal Narayanan; Iniyan NatarajanORCID; Joey NeilsenORCID; Roberto NeriORCID; Chunchong NiORCID; Aristeidis NoutsosORCID; Michael A. NowakORCID; Hiroki Okino; Héctor OlivaresORCID; Gisela N. Ortiz-LeónORCID; Tomoaki Oyama; Feryal Özel; Daniel C. M. PalumboORCID; Jongho ParkORCID; Nimesh Patel; Ue-Li PenORCID; Dominic W. PesceORCID; Vincent Piétu; Richard PlambeckORCID; Aleksandar PopStefanija; Oliver PorthORCID; Felix M. PötzlORCID; Ben PratherORCID; Jorge A. Preciado-LópezORCID; Dimitrios PsaltisORCID; Hung-Yi PuORCID; Venkatessh RamakrishnanORCID; Ramprasad RaoORCID; Mark G. RawlingsORCID; Alexander W. RaymondORCID; Luciano RezzollaORCID; Bart RipperdaORCID; Freek RoelofsORCID; Alan Rogers; Mel RoseORCID; Arash Roshanineshat; Helge Rottmann; Alan L. RoyORCID; Chet RuszczykORCID; Kazi L. J. RyglORCID; Salvador Sánchez; David Sánchez-ArguellesORCID; Mahito SasadaORCID; Tuomas SavolainenORCID; F. Peter Schloerb; Karl-Friedrich Schuster; Lijing ShaoORCID; Zhiqiang ShenORCID; Des SmallORCID; Bong Won SohnORCID; Jason SooHooORCID; He SunORCID; Fumie TazakiORCID; Alexandra J. TetarenkoORCID; Paul TiedeORCID; Remo P. J. TilanusORCID; Michael TitusORCID; Kenji TomaORCID; Pablo TorneORCID; Tyler Trent; Efthalia TraianouORCID; Sascha TrippeORCID; Ilse van BemmelORCID; Huib Jan van LangeveldeORCID; Daniel R. van RossumORCID; Jan WagnerORCID; Derek Ward-ThompsonORCID; John WardleORCID; Jonathan WeintroubORCID; Norbert WexORCID; Robert WhartonORCID; Maciek WielgusORCID; George N. WongORCID; Qingwen WuORCID; Doosoo YoonORCID; André YoungORCID; Ken YoungORCID; Feng YuanORCID; Ye-Fei YuanORCID; J. Anton ZensusORCID; Guang-Yao ZhaoORCID; Shan-Shan ZhaoORCID; Gabriele BruniORCID; A. Gopakumar; Antonio Hernández-GómezORCID; Ruben Herrero-Illana; Adam IngramORCID; S. KomossaORCID; Y. Y. KovalevORCID; Dirk MudersORCID; Manel PeruchoORCID; Florian Rösch; Mauri ValtonenORCID

<jats:title>Abstract</jats:title> <jats:p>We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the <jats:italic>λ</jats:italic>3 mm and <jats:italic>λ</jats:italic>1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM &gt; 10<jats:sup>3.3</jats:sup>–10<jats:sup>5.5</jats:sup> rad m<jats:sup>−2</jats:sup>), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 3 mm and −4.1 to 1.5 × 10<jats:sup>5</jats:sup> rad m<jats:sup>−2</jats:sup> at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L14

Interstellar Detection of 2-cyanocyclopentadiene, C5H5CN, a Second Five-membered Ring toward TMC-1

Kin Long Kelvin LeeORCID; P. Bryan ChangalaORCID; Ryan A. LoomisORCID; Andrew M. BurkhardtORCID; Ci XueORCID; Martin A. CordinerORCID; Steven B. Charnley; Michael C. McCarthyORCID; Brett A. McGuireORCID

<jats:title>Abstract</jats:title> <jats:p>Using radio observations with the Green Bank Telescope, evidence has now been found for a second five-membered ring in the dense cloud Taurus Molecular Cloud-1 (TMC-1). Based on additional observations of an ongoing, large-scale, high-sensitivity spectral line survey (GOTHAM) at centimeter wavelengths toward this source, we have used a combination of spectral stacking, Markov Chain Monte Carlo (MCMC), and matched filtering techniques to detect 2-cyanocyclopentadiene, a low-lying isomer of 1-cyanocyclopentadiene, which was recently discovered there by the same methods. The new observational data also yield a considerably improved detection significance for the more stable isomer and evidence for several individual transitions between 23–32 GHz. Through our MCMC analysis, we derive cospatial, total column densities of 8.3 × 10<jats:sup>11</jats:sup> and 1.9 × 10<jats:sup>11</jats:sup> cm<jats:sup>−2</jats:sup> for 1- and 2-cyanocyclopentadiene, respectively, corresponding to a ratio of ∼4.4 favoring the former. The derived abundance ratios point toward a common formation pathway—most likely being cyanation of cyclopentadiene by analogy to benzonitrile.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L2