Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun

Hisashi HayakawaORCID; Paulo RibeiroORCID; José M. VaqueroORCID; María Cruz GallegoORCID; Delores J. Knipp; Florian Mekhaldi; Ankush BhaskarORCID; Denny M. OliveiraORCID; Yuta NotsuORCID; Víctor M. S. CarrascoORCID; Ana Caccavari; Bhaskara Veenadhari; Shyamoli Mukherjee; Yusuke EbiharaORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L10

The State of the Heliosphere Revealed by Limb-halo Coronal Mass Ejections in Solar Cycles 23 and 24

Nat GopalswamyORCID; Sachiko AkiyamaORCID; Seiji YashiroORCID

<jats:title>Abstract</jats:title> <jats:p>We compare the properties of halo coronal mass ejections (CMEs) that originate close to the limb (within a central meridian distance range of 60°–∼90°) during solar cycles 23 and 24 to quantify the effect of the heliospheric state on CME properties. There are 44 and 38 limb halos in cycles 23 and 24, respectively. Normalized to the cycle-averaged total sunspot number, there are 42% more limb halos in cycle 24. Although the limb halos as a population are very fast (average speed ∼1464 km s<jats:sup>−1</jats:sup>), cycle-24 halos are slower by ∼26% than the cycle-23 halos. We introduce a new parameter, the heliocentric distance of the CME leading edge at the time a CME becomes a full halo; this height is significantly shorter in cycle 24 (by ∼20%) and has a lower cutoff at ∼6 <jats:italic>R</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub>. These results show that cycle-24 CMEs become halos sooner and at a lower speed than the cycle-23 ones. On the other hand, the flare sizes are very similar in the two cycles, ruling out the possibility of eruption characteristics contributing to the differing CME properties. In summary, this study reveals the effect of the reduced total pressure in the heliosphere that allows cycle-24 CMEs to expand more and become halos sooner than in cycle 23. Our findings have important implications for the space-weather consequences of CMEs in cycle 25 (predicted to be similar to cycle 24) and for understanding the disparity in halo counts reported by automatic and manual catalogs.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L1

Characteristics and Importance of “ICME-in-sheath” Phenomenon and Upper Limit for Geomagnetic Storm Activity

Ying D. LiuORCID; Chong Chen; Xiaowei ZhaoORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L11

Image-based Classification of Variable Stars: First Results from Optical Gravitational Lensing Experiment Data

T. SzklenárORCID; A. BódiORCID; D. Tarczay-NehézORCID; K. VidaORCID; G. MartonORCID; Gy. MezőORCID; A. ForróORCID; R. SzabóORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L12

Estimating the Energy Dissipation from Kelvin–Helmholtz Instability Induced Turbulence in Oscillating Coronal Loops

Andrew HillierORCID; Tom Van DoorsselaereORCID; Konstantinos KarampelasORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L13

Pōniuā‘ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole

Jinyi YangORCID; Feige WangORCID; Xiaohui FanORCID; Joseph F. HennawiORCID; Frederick B. DaviesORCID; Minghao YueORCID; Eduardo BanadosORCID; Xue-Bing WuORCID; Bram VenemansORCID; Aaron J. BarthORCID; Fuyan BianORCID; Konstantina BoutsiaORCID; Roberto DecarliORCID; Emanuele Paolo FarinaORCID; Richard GreenORCID; Linhua JiangORCID; Jiang-Tao LiORCID; Chiara MazzucchelliORCID; Fabian WalterORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L14

Fine Structure of a Solar Type II Radio Burst Observed by LOFAR

Jasmina MagdalenićORCID; Christophe Marqué; Richard A. FallowsORCID; Gottfried Mann; Christian VocksORCID; Pietro ZuccaORCID; Bartosz P. DabrowskiORCID; Andrzej KrankowskiORCID; Valentin MelnikORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L15

Electron Acceleration in One-dimensional Nonrelativistic Quasi-perpendicular Collisionless Shocks

Rui XuORCID; Anatoly Spitkovsky; Damiano CaprioliORCID

<jats:title>Abstract</jats:title> <jats:p>We study diffusive shock acceleration (DSA) of electrons in nonrelativistic quasi-perpendicular shocks using self-consistent one-dimensional particle-in-cell simulations. By exploring the parameter space of sonic and Alfvénic Mach numbers we find that high Mach number quasi-perpendicular shocks can efficiently accelerate electrons to power-law downstream spectra with slopes consistent with DSA prediction. Electrons are reflected by magnetic mirroring at the shock and drive nonresonant waves in the upstream. Reflected electrons are trapped between the shock front and upstream waves, and undergo multiple cycles of shock-drift acceleration before the injection into DSA. Strong current-driven waves also temporarily change the shock obliquity and cause mild proton pre-acceleration even in quasi-perpendicular shocks, which otherwise do not accelerate protons. These results can be used to understand nonthermal emission in supernova remnants and intracluster medium in galaxy clusters.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L41

NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event

Samuel GillORCID; Peter J. WheatleyORCID; Benjamin F. CookeORCID; Andrés JordánORCID; Louise D. NielsenORCID; Daniel BaylissORCID; David R. AndersonORCID; Jose I. VinesORCID; Monika LendlORCID; Jack S. Acton; David J. ArmstrongORCID; François Bouchy; Rafael BrahmORCID; Edward M. Bryant; Matthew R. BurleighORCID; Sarah L. CasewellORCID; Philipp Eigmüller; Néstor EspinozaORCID; Edward GillenORCID; Michael R. Goad; Nolan GrievesORCID; Maximilian N. GüntherORCID; Thomas HenningORCID; Melissa J. HobsonORCID; Aleisha Hogan; James S. JenkinsORCID; James McCormac; Maximiliano Moyano; Hugh P. OsbornORCID; Don PollaccoORCID; Didier QuelozORCID; Heike Rauer; Liam Raynard; Felipe Rojas; Paula SarkisORCID; Alexis M. S. SmithORCID; Marcelo Tala Pinto; Rosanna H. Tilbrook; Stéphane UdryORCID; Christopher A. Watson; Richard G. WestORCID

<jats:title>Abstract</jats:title> <jats:p>We report the discovery of NGTS-11 b (=TOI-1847b), a transiting Saturn in a 35.46 day orbit around a mid K-type star (<jats:inline-formula> <jats:tex-math> <?CDATA ${T}_{\mathrm{eff}}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab9eb9ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> = 5050 ± 80 K). We initially identified the system from a single-transit event in a TESS full-frame image light curve. Following 79 nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial-velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of <jats:inline-formula> <jats:tex-math> <?CDATA $0.817{\pm }_{0.032}^{0.028}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab9eb9ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math> <?CDATA ${R}_{\mathrm{Jup}}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab9eb9ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>, a mass of <jats:inline-formula> <jats:tex-math> <?CDATA $0.344{\pm }_{0.073}^{0.092}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab9eb9ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\mathrm{Jup}}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab9eb9ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>, and an equilibrium temperature of just <jats:inline-formula> <jats:tex-math> <?CDATA $435{\pm }_{32}^{34}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab9eb9ieqn6.gif" xlink:type="simple" /> </jats:inline-formula> K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single-transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L11

Lopsided Satellite Distributions around Isolated Host Galaxies

Tereasa G. BrainerdORCID; Adam SamuelsORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L15