Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Letters (ApJL)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2010 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
2041-8205
ISSN electrónico
2041-8213
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Coma Anisotropy and the Rotation Pole of Interstellar Comet 2I/Borisov
Yoonyoung Kim; David Jewitt; Max Mutchler; Jessica Agarwal; Man-To Hui; Harold Weaver
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L34
Periodicity Search for Pulsar Binaries with TESS
Partha Sarathi Pal; P. H. T. Tam; Weitang Liang; Chengye Cao; K. L. Li; C. Y. Hui; A. K. H. Kong
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L36
Can Planet Nine Be Detected Gravitationally by a Subrelativistic Spacecraft?
Thiem Hoang; Abraham Loeb
<jats:title>Abstract</jats:title> <jats:p>Planet Nine was proposed as an explanation for the clustering of orbits for some trans-Neptunian objects. Recently, the use of a subrelativistic spacecraft was proposed to indirectly probe Planet Nine's gravitational influence. Here we study the effects of the drag and electromagnetic forces exerted on a subrelativistic spacecraft by the interstellar medium (ISM) and compare these forces with the gravitational force induced by Planet Nine. We find that the resulting noise due to density and magnetic fluctuations would dominate over Planet Nine's gravitational signal at subrelativistic speeds, <jats:italic>v</jats:italic> ≳ 0.001 <jats:italic>c</jats:italic>. We then identify the parameter space required to overcome the drag and magnetic noise from the ISM turbulence and enable the detection of Planet Nine's gravity. Finally, we discuss practical strategies to mitigate the effect of the drag and electromagnetic forces.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L35
The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder
Shivani Bhandari; Elaine M. Sadler; J. Xavier Prochaska; Sunil Simha; Stuart D. Ryder; Lachlan Marnoch; Keith W. Bannister; Jean-Pierre Macquart; Chris Flynn; Ryan M. Shannon; Nicolas Tejos; Felipe Corro-Guerra; Cherie K. Day; Adam T. Deller; Ron Ekers; Sebastian Lopez; Elizabeth K. Mahony; Consuelo Nuñez; Chris Phillips
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L37
A Redshift for the First Einstein Ring, MG 1131+0456
Daniel Stern; Dominic J. Walton
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L38
First Radio Evidence for Impulsive Heating Contribution to the Quiet Solar Corona
Surajit Mondal; Divya Oberoi; Atul Mohan
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L39
Abnormal Dawn–Dusk Asymmetry of Protonated Ions in the Martian Ionosphere
J. Cui; Ren Z.-P.; Wu Z.-P.; Wu X.-S.; Hao Y.-Q.; Y. Wei
<jats:title>Abstract</jats:title> <jats:p>Normally, the Martian ionosphere displays a dusk enhancement due to continuous depletion of plasma via recombination during day-to-night transport. Using the extensive measurements made by the Neutral Gas and Ion Mass Spectrometer on board the Mars Atmosphere and Volatile Evolution spacecraft, we show that several species, including <jats:inline-formula> <jats:tex-math> <?CDATA ${{\rm{H}}}_{2}^{+}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab930cieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, OH<jats:sup>+</jats:sup>, H<jats:sub>2</jats:sub>O<jats:sup>+</jats:sup>, and NH<jats:sup>+</jats:sup>, present instead an abnormal dawn enhancement above the exobase where they are mainly produced by ion-neutral reactions involving H<jats:sub>2</jats:sub>. Such a peculiarity is indicative of a dawn bulge of H<jats:sub>2</jats:sub> present in the Martian upper atmosphere and corona, which is driven by subsidence in regions of horizontal wind convergence and the subsequent buildup of minor atmospheric species with large vertical scale heights. A similar dynamical process is also known to occur in the upper atmospheres of other solar system bodies such as the Earth, Venus, and Titan. Interestingly, despite that the diurnal variations of O and N are subject to the same dynamical effect, a dawn enhancement is not seen for O<jats:sup>+</jats:sup> and N<jats:sup>+</jats:sup>, possibly due to the nonthermal production of their parent atoms in the ambient atmosphere via processes such as photodissociation and dissociative recombination. The H<jats:sub>2</jats:sub> distribution inferred in this study is important for a thorough understanding of hydrogen escape and climate evolution on Mars.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L43
Constraints on Compact Dark Matter with Fast Radio Burst Observations
Kai Liao; S.-B. Zhang; Zhengxiang Li; He Gao
<jats:title>Abstract</jats:title> <jats:p>Fast radio bursts (FRBs) are bright radio transients with millisecond duration at cosmological distances. Since compact dark matter/objects (COs) could act as lenses and cause splitting of these kinds of very short duration signals, Muñoz et al. have proposed a novel method to probe COs with lensing of FRBs. In this Letter, we for the first time apply this method to real data and give constraints of the nature of COs with currently available FRB observations. We emphasize that the information from dynamic spectra of FRBs is quite necessary for identifying any lensed signals and find no echoes in the existing data. The null search gives a constraint comparable to that from galactic wide binaries, though the methods of redshift inference from the dispersion measure would impact a little. Furthermore, we make an improved forecast based on the distributions of real data for the ongoing and upcoming telescopes. Finally, we discuss the situation where one or more lensed signals will be detected. In such a case, the parameter space of COs can be pinned down very well since the lens mass can be directly determined through the observed flux ratio and time delay between split images.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L11
Quiet-time Solar Wind Suprathermal Electrons of Different Solar Origins
Liu Yang; Linghua Wang; Liang Zhao; Jiawei Tao; Gang Li; Robert F. Wimmer–Schweingruber; Jiansen He; Hui Tian; Stuart D. Bale
<jats:title>Abstract</jats:title> <jats:p>The energy spectrum of solar wind strahl, halo, and superhalo electrons likely carries crucial information on their possible origin and acceleration at the Sun. Here we statistically investigate the energy spectrum of solar wind strahl/halo electrons at ∼0.1–1.5 keV and superhalo electrons at ∼20–200 keV measured by Wind/3D Plasma and Energetic Particle during quiet times from 1998 to 2014, according to the types of their Potential Field Source Surface–mapped coronal source regions (CSRs). We adopt the classification scheme developed by Zhao et al. to categorize the CSRs into four types: active region (AR), quiet Sun (QS), coronal hole (CH), and helmet-streamer associated region (HS). We find that for the quiet-time strahl, the AR and HS (QS and CH) correspond to a smaller (larger) kappa index <jats:italic>κ</jats:italic> <jats:sub>strahl</jats:sub> with the most frequent value of 7–8.5 (8.5–10) and a larger (smaller) <jats:italic>n</jats:italic> <jats:sub>strahl</jats:sub> with the most frequent value of 0.013–0.026 cm<jats:sup>−3</jats:sup> (0.006–0.0013 cm<jats:sup>−3</jats:sup>). For the quiet-time halo, <jats:italic>κ</jats:italic> <jats:sub>halo</jats:sub> behaves similarly to <jats:italic>κ</jats:italic> <jats:sub>strahl</jats:sub>, but <jats:italic>n</jats:italic> <jats:sub>halo</jats:sub> appears similar among the four CSR types. For the superhalo, the AR (QS) corresponds to a larger (smaller) power-law index <jats:italic>β</jats:italic> with the most frequent value of 2.2–2.4 (1.8–2.0), while the HS and CH have a <jats:italic>β</jats:italic> not different from either the AR or QS; <jats:italic>n</jats:italic> <jats:sub>sup</jats:sub> appears similar, with the most frequent value of 3 × 10<jats:sup>−8</jats:sup>–3 × 10<jats:sup>−7</jats:sup> cm<jats:sup>−3</jats:sup>, among the four CSR types. These results suggest that the strahl (superhalo) from the hotter CSRs tends to be more (less) efficiently accelerated.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L5
GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object
R. Abbott; T. D. Abbott; S. Abraham; F. Acernese; K. Ackley; C. Adams; R. X. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Aich; L. Aiello; A. Ain; P. Ajith; S. Akcay; G. Allen; A. Allocca; P. A. Altin; A. Amato; S. Anand; A. Ananyeva; S. B. Anderson; W. G. Anderson; S. V. Angelova; S. Ansoldi; S. Antier; S. Appert; K. Arai; M. C. Araya; J. S. Areeda; M. Arène; N. Arnaud; S. M. Aronson; K. G. Arun; Y. Asali; S. Ascenzi; G. Ashton; S. M. Aston; P. Astone; F. Aubin; P. Aufmuth; K. AultONeal; C. Austin; V. Avendano; S. Babak; P. Bacon; F. Badaracco; M. K. M. Bader; S. Bae; A. M. Baer; J. Baird; F. Baldaccini; G. Ballardin; S. W. Ballmer; A. Bals; A. Balsamo; G. Baltus; S. Banagiri; D. Bankar; R. S. Bankar; J. C. Barayoga; C. Barbieri; B. C. Barish; D. Barker; K. Barkett; P. Barneo; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; D. Barta; J. Bartlett; I. Bartos; R. Bassiri; A. Basti; M. Bawaj; J. C. Bayley; M. Bazzan; B. Bécsy; M. Bejger; I. Belahcene; A. S. Bell; D. Beniwal; M. G. Benjamin; R. Benkel; J. D. Bentley; F. Bergamin; B. K. Berger; G. Bergmann; S. Bernuzzi; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; R. Bhandare; A. V. Bhandari; J. Bidler; E. Biggs; I. A. Bilenko; G. Billingsley; R. Birney; O. Birnholtz; S. Biscans; M. Bischi; S. Biscoveanu; A. Bisht; G. Bissenbayeva; M. Bitossi; M. A. Bizouard; J. K. Blackburn; J. Blackman; C. D. Blair; D. G. Blair; R. M. Blair; F. Bobba; N. Bode; M. Boer; Y. Boetzel; G. Bogaert; F. Bondu; E. Bonilla; R. Bonnand; P. Booker; B. A. Boom; R. Bork; V. Boschi; S. Bose; V. Bossilkov; J. Bosveld; Y. Bouffanais; A. Bozzi; C. Bradaschia; P. R. Brady; A. Bramley; M. Branchesi; J. E. Brau; M. Breschi; T. Briant; J. H. Briggs; F. Brighenti; A. Brillet; M. Brinkmann; R. Brito; P. Brockill; A. F. Brooks; J. Brooks; D. D. Brown; S. Brunett; G. Bruno; R. Bruntz; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; R. L. Byer; M. Cabero; L. Cadonati; G. Cagnoli; C. Cahillane; J. Calderón Bustillo; J. D. Callaghan; T. A. Callister; E. Calloni; J. B. Camp; M. Canepa; K. C. Cannon; H. Cao; J. Cao; G. Carapella; F. Carbognani; S. Caride; M. F. Carney; G. Carullo; J. Casanueva Diaz; C. Casentini; J. Castañeda; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; P. Cerdá-Durán; E. Cesarini; O. Chaibi; K. Chakravarti; C. Chan; M. Chan; S. Chao; P. Charlton; E. A. Chase; E. Chassande-Mottin; D. Chatterjee; M. Chaturvedi; K. Chatziioannou; H. Y. Chen; X. Chen; Y. Chen; H.-P. Cheng; C. K. Cheong; H. Y. Chia; F. Chiadini; R. Chierici; A. Chincarini; A. Chiummo; G. Cho; H. S. Cho; M. Cho; N. Christensen; Q. Chu; S. Chua; K. W. Chung; S. Chung; G. Ciani; P. Ciecielag; M. Cieślar; A. A. Ciobanu; R. Ciolfi; F. Cipriano; A. Cirone; F. Clara; J. A. Clark; P. Clearwater; S. Clesse; F. Cleva; E. Coccia; P.-F. Cohadon; D. Cohen; M. Colleoni; C. G. Collette; C. Collins; M. Colpi; M. Constancio; L. Conti; S. J. Cooper; P. Corban; T. R. Corbitt; I. Cordero-Carrión; S. Corezzi; K. R. Corley; N. Cornish; D. Corre; A. Corsi; S. Cortese; C. A. Costa; R. Cotesta; M. W. Coughlin; S. B. Coughlin; J.-P. Coulon; S. T. Countryman; P. Couvares; P. B. Covas; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; J. D. E. Creighton; T. D. Creighton; J. Cripe; M. Croquette; S. G. Crowder; J.-R. Cudell; T. J. Cullen; A. Cumming; R. Cummings; L. Cunningham; E. Cuoco; M. Curylo; T. Dal Canton; G. Dálya; A. Dana; L. M. Daneshgaran-Bajastani; B. D’Angelo; S. L. Danilishin; S. D’Antonio; K. Danzmann; C. Darsow-Fromm; A. Dasgupta; L. E. H. Datrier; V. Dattilo; I. Dave; M. Davier; G. S. Davies; D. Davis; E. J. Daw; D. DeBra; M. Deenadayalan; J. Degallaix; M. De Laurentis; S. Deléglise; M. Delfavero; N. De Lillo; W. Del Pozzo; L. M. DeMarchi; V. D’Emilio; N. Demos; T. Dent; R. De Pietri; R. De Rosa; C. De Rossi; R. DeSalvo; O. de Varona; S. Dhurandhar; M. C. Díaz; M. Diaz-Ortiz; T. Dietrich; L. Di Fiore; C. Di Fronzo; C. Di Giorgio; F. Di Giovanni; M. Di Giovanni; T. Di Girolamo; A. Di Lieto; B. Ding; S. Di Pace; I. Di Palma; F. Di Renzo; A. K. Divakarla; A. Dmitriev; Z. Doctor; F. Donovan; K. L. Dooley; S. Doravari; I. Dorrington; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; J.-G. Ducoin; P. Dupej; O. Durante; D. D’Urso; S. E. Dwyer; P. J. Easter; G. Eddolls; B. Edelman; T. B. Edo; O. Edy; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; M. Eisenmann; R. A. Eisenstein; A. Ejlli; L. Errico; R. C. Essick; H. Estelles; D. Estevez; Z. B. Etienne; T. Etzel; M. Evans; T. M. Evans; B. E. Ewing; V. Fafone; S. Fairhurst; X. Fan; S. Farinon; B. Farr; W. M. Farr; E. J. Fauchon-Jones; M. Favata; M. Fays; M. Fazio; J. Feicht; M. M. Fejer; F. Feng; E. Fenyvesi; D. L. Ferguson; A. Fernandez-Galiana; I. Ferrante; E. C. Ferreira; T. A. Ferreira; F. Fidecaro; I. Fiori; D. Fiorucci; M. Fishbach; R. P. Fisher; R. Fittipaldi; M. Fitz-Axen; V. Fiumara; R. Flaminio; E. Floden; E. Flynn; H. Fong; J. A. Font; P. W. F. Forsyth; J.-D. Fournier; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; V. Frey; P. Fritschel; V. V. Frolov; G. Fronzè; P. Fulda; M. Fyffe; H. A. Gabbard; B. U. Gadre; S. M. Gaebel; J. R. Gair; S. Galaudage; D. Ganapathy; A. Ganguly; S. G. Gaonkar; C. García-Quirós; F. Garufi; B. Gateley; S. Gaudio; V. Gayathri; G. Gemme; E. Genin; A. Gennai; D. George; J. George; L. Gergely; S. Ghonge; Abhirup Ghosh; Archisman Ghosh; S. Ghosh; B. Giacomazzo; J. A. Giaime; K. D. Giardina; D. R. Gibson; C. Gier; K. Gill; J. Glanzer; J. Gniesmer; P. Godwin; E. Goetz; R. Goetz; N. Gohlke; B. Goncharov; G. González; A. Gopakumar; S. E. Gossan; M. Gosselin; R. Gouaty; B. Grace; A. Grado; M. Granata; A. Grant; S. Gras; P. Grassia; C. Gray; R. Gray; G. Greco; A. C. Green; R. Green; E. M. Gretarsson; H. L. Griggs; G. Grignani; A. Grimaldi; S. J. Grimm; H. Grote; S. Grunewald; P. Gruning; G. M. Guidi; A. R. Guimaraes; G. Guixé; H. K. Gulati; Y. Guo; A. Gupta; Anchal Gupta; P. Gupta; E. K. Gustafson; R. Gustafson; L. Haegel; O. Halim; E. D. Hall; E. Z. Hamilton; G. Hammond; M. Haney; M. M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; O. A. Hannuksela; T. J. Hansen; J. Hanson; T. Harder; T. Hardwick; K. Haris; J. Harms; G. M. Harry; I. W. Harry; R. K. Hasskew; C.-J. Haster; K. Haughian; F. J. Hayes; J. Healy; A. Heidmann; M. C. Heintze; J. Heinze; H. Heitmann; F. Hellman; P. Hello; G. Hemming; M. Hendry; I. S. Heng; E. Hennes; J. Hennig; M. Heurs; S. Hild; T. Hinderer; S. Y. Hoback; S. Hochheim; E. Hofgard; D. Hofman; A. M. Holgado; N. A. Holland; K. Holt; D. E. Holz; P. Hopkins; C. Horst; J. Hough; E. J. Howell; C. G. Hoy; Y. Huang; M. T. Hübner; E. A. Huerta; D. Huet; B. Hughey; V. Hui; S. Husa; S. H. Huttner; R. Huxford; T. Huynh-Dinh; B. Idzkowski; A. Iess; H. Inchauspe; C. Ingram; G. Intini; J.-M. Isac; M. Isi; B. R. Iyer; T. Jacqmin; S. J. Jadhav; S. P. Jadhav; A. L. James; K. Jani; N. N. Janthalur; P. Jaranowski; D. Jariwala; R. Jaume; A. C. Jenkins; J. Jiang; G. R. Johns; N. K. Johnson-McDaniel; A. W. Jones; D. I. Jones; J. D. Jones; P. Jones; R. Jones; R. J. G. Jonker; L. Ju; J. Junker; C. V. Kalaghatgi; V. Kalogera; B. Kamai; S. Kandhasamy; G. Kang; J. B. Kanner; S. J. Kapadia; S. Karki; R. Kashyap; M. Kasprzack; W. Kastaun; S. Katsanevas; E. Katsavounidis; W. Katzman; S. Kaufer; K. Kawabe; F. Kéfélian; D. Keitel; A. Keivani; R. Kennedy; J. S. Key; S. Khadka; F. Y. Khalili; I. Khan; S. Khan; Z. A. Khan; E. A. Khazanov; N. Khetan; M. Khursheed; N. Kijbunchoo; Chunglee Kim; G. J. Kim; J. C. Kim; K. Kim; W. Kim; W. S. Kim; Y.-M. Kim; C. Kimball; P. J. King; M. Kinley-Hanlon; R. Kirchhoff; J. S. Kissel; L. Kleybolte; S. Klimenko; T. D. Knowles; E. Knyazev; P. Koch; S. M. Koehlenbeck; G. Koekoek; S. Koley; V. Kondrashov; A. Kontos; N. Koper; M. Korobko; W. Z. Korth; M. Kovalam; D. B. Kozak; V. Kringel; N. V. Krishnendu; A. Królak; N. Krupinski; G. Kuehn; A. Kumar; P. Kumar; Rahul Kumar; Rakesh Kumar; S. Kumar; L. Kuo; A. Kutynia; B. D. Lackey; D. Laghi; E. Lalande; T. L. Lam; A. Lamberts; M. Landry; P. Landry; B. B. Lane; R. N. Lang; J. Lange; B. Lantz; R. K. Lanza; I. La Rosa; A. Lartaux-Vollard; P. D. Lasky; M. Laxen; A. Lazzarini; C. Lazzaro; P. Leaci; S. Leavey; Y. K. Lecoeuche; C. H. Lee; H. M. Lee; H. W. Lee; J. Lee; K. Lee; J. Lehmann; N. Leroy; N. Letendre; Y. Levin; A. K. Y. Li; J. Li; K. li; T. G. F. Li; X. Li; F. Linde; S. D. Linker; J. N. Linley; T. B. Littenberg; J. Liu; X. Liu; M. Llorens-Monteagudo; R. K. L. Lo; A. Lockwood; L. T. London; A. Longo; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; J. D. Lough; C. O. Lousto; G. Lovelace; H. Lück; D. Lumaca; A. P. Lundgren; Y. Ma; R. Macas; S. Macfoy; M. MacInnis; D. M. Macleod; I. A. O. MacMillan; A. Macquet; I. Magaña Hernandez; F. Magaña-Sandoval; R. M. Magee; E. Majorana; I. Maksimovic; A. Malik; N. Man; V. Mandic; V. Mangano; G. L. Mansell; M. Manske; M. Mantovani; M. Mapelli; F. Marchesoni; F. Marion; S. Márka; Z. Márka; C. Markakis; A. S. Markosyan; A. Markowitz; E. Maros; A. Marquina; S. Marsat; F. Martelli; I. W. Martin; R. M. Martin; V. Martinez; D. V. Martynov; H. Masalehdan; K. Mason; E. Massera; A. Masserot; T. J. Massinger; M. Masso-Reid; S. Mastrogiovanni; A. Matas; F. Matichard; N. Mavalvala; E. Maynard; J. J. McCann; R. McCarthy; D. E. McClelland; S. McCormick; L. McCuller; S. C. McGuire; C. McIsaac; J. McIver; D. J. McManus; T. McRae; S. T. McWilliams; D. Meacher; G. D. Meadors; M. Mehmet; A. K. Mehta; E. Mejuto Villa; A. Melatos; G. Mendell; R. A. Mercer; L. Mereni; K. Merfeld; E. L. Merilh; J. D. Merritt; M. Merzougui; S. Meshkov; C. Messenger; C. Messick; R. Metzdorff; P. M. Meyers; F. Meylahn; A. Mhaske; A. Miani; H. Miao; I. Michaloliakos; C. Michel; H. Middleton; L. Milano; A. L. Miller; M. Millhouse; J. C. Mills; E. Milotti; M. C. Milovich-Goff; O. Minazzoli; Y. Minenkov; A. Mishkin; C. Mishra; T. Mistry; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; G. Mo; K. Mogushi; S. R. P. Mohapatra; S. R. Mohite; M. Molina-Ruiz; M. Mondin; M. Montani; C. J. Moore; D. Moraru; F. Morawski; G. Moreno; S. Morisaki; B. Mours; C. M. Mow-Lowry; S. Mozzon; F. Muciaccia; Arunava Mukherjee; D. Mukherjee; S. Mukherjee; Subroto Mukherjee; N. Mukund; A. Mullavey; J. Munch; E. A. Muñiz; P. G. Murray; A. Nagar; I. Nardecchia; L. Naticchioni; R. K. Nayak; B. F. Neil; J. Neilson; G. Nelemans; T. J. N. Nelson; M. Nery; A. Neunzert; K. Y. Ng; S. Ng; C. Nguyen; P. Nguyen; D. Nichols; S. A. Nichols; S. Nissanke; F. Nocera; M. Noh; C. North; D. Nothard; L. K. Nuttall; J. Oberling; B. D. O’Brien; G. Oganesyan; G. H. Ogin; J. J. Oh; S. H. Oh; F. Ohme; H. Ohta; M. A. Okada; M. Oliver; C. Olivetto; P. Oppermann; Richard J. Oram; B. O’Reilly; R. G. Ormiston; L. F. Ortega; R. O’Shaughnessy; S. Ossokine; C. Osthelder; D. J. Ottaway; H. Overmier; B. J. Owen; A. E. Pace; G. Pagano; M. A. Page; G. Pagliaroli; A. Pai; S. A. Pai; J. R. Palamos; O. Palashov; C. Palomba; H. Pan; P. K. Panda; P. T. H. Pang; C. Pankow; F. Pannarale; B. C. Pant; F. Paoletti; A. Paoli; A. Parida; W. Parker; D. Pascucci; A. Pasqualetti; R. Passaquieti; D. Passuello; B. Patricelli; E. Payne; B. L. Pearlstone; T. C. Pechsiri; A. J. Pedersen; M. Pedraza; A. Pele; S. Penn; A. Perego; C. J. Perez; C. Périgois; A. Perreca; S. Perriès; J. Petermann; H. P. Pfeiffer; M. Phelps; K. S. Phukon; O. J. Piccinni; M. Pichot; M. Piendibene; F. Piergiovanni; V. Pierro; G. Pillant; L. Pinard; I. M. Pinto; K. Piotrzkowski; M. Pirello; M. Pitkin; W. Plastino; R. Poggiani; D. Y. T. Pong; S. Ponrathnam; P. Popolizio; E. K. Porter; J. Powell; A. K. Prajapati; K. Prasai; R. Prasanna; G. Pratten; T. Prestegard; M. Principe; G. A. Prodi; L. Prokhorov; M. Punturo; P. Puppo; M. Pürrer; H. Qi; V. Quetschke; P. J. Quinonez; F. J. Raab; G. Raaijmakers; H. Radkins; N. Radulesco; P. Raffai; H. Rafferty; S. Raja; C. Rajan; B. Rajbhandari; M. Rakhmanov; K. E. Ramirez; A. Ramos-Buades; Javed Rana; K. Rao; P. Rapagnani; V. Raymond; M. Razzano; J. Read; T. Regimbau; L. Rei; S. Reid; D. H. Reitze; P. Rettegno; F. Ricci; C. J. Richardson; J. W. Richardson; P. M. Ricker; G. Riemenschneider; K. Riles; M. Rizzo; N. A. Robertson; F. Robinet; A. Rocchi; R. D. Rodriguez-Soto; L. Rolland; J. G. Rollins; V. J. Roma; M. Romanelli; R. Romano; C. L. Romel; I. M. Romero-Shaw; J. H. Romie; C. A. Rose; D. Rose; K. Rose; D. Rosińska; S. G. Rosofsky; M. P. Ross; S. Rowan; S. J. Rowlinson; P. K. Roy; Santosh Roy; Soumen Roy; P. Ruggi; G. Rutins; K. Ryan; S. Sachdev; T. Sadecki; M. Sakellariadou; O. S. Salafia; L. Salconi; M. Saleem; F. Salemi; A. Samajdar; E. J. Sanchez; L. E. Sanchez; N. Sanchis-Gual; J. R. Sanders; K. A. Santiago; E. Santos; N. Sarin; B. Sassolas; B. S. Sathyaprakash; O. Sauter; R. L. Savage; V. Savant; D. Sawant; S. Sayah; D. Schaetzl; P. Schale; M. Scheel; J. Scheuer; P. Schmidt; R. Schnabel; R. M. S. Schofield; A. Schönbeck; E. Schreiber; B. W. Schulte; B. F. Schutz; O. Schwarm; E. Schwartz; J. Scott; S. M. Scott; E. Seidel; D. Sellers; A. S. Sengupta; N. Sennett; D. Sentenac; V. Sequino; A. Sergeev; Y. Setyawati; D. A. Shaddock; T. Shaffer; M. S. Shahriar; A. Sharma; P. Sharma; P. Shawhan; H. Shen; M. Shikauchi; R. Shink; D. H. Shoemaker; D. M. Shoemaker; K. Shukla; S. ShyamSundar; K. Siellez; M. Sieniawska; D. Sigg; L. P. Singer; D. Singh; N. Singh; A. Singha; A. Singhal; A. M. Sintes; V. Sipala; V. Skliris; B. J. J. Slagmolen; T. J. Slaven-Blair; J. Smetana; J. R. Smith; R. J. E. Smith; S. Somala; E. J. Son; S. Soni; B. Sorazu; V. Sordini; F. Sorrentino; T. Souradeep; E. Sowell; A. P. Spencer; M. Spera; A. K. Srivastava; V. Srivastava; K. Staats; C. Stachie; M. Standke; D. A. Steer; J. Steinhoff; M. Steinke; J. Steinlechner; S. Steinlechner; D. Steinmeyer; S. Stevenson; D. Stocks; D. J. Stops; M. Stover; K. A. Strain; G. Stratta; A. Strunk; R. Sturani; A. L. Stuver; S. Sudhagar; V. Sudhir; T. Z. Summerscales; L. Sun; S. Sunil; A. Sur; J. Suresh; P. J. Sutton; B. L. Swinkels; M. J. Szczepańczyk; M. Tacca; S. C. Tait; C. Talbot; A. J. Tanasijczuk; D. B. Tanner; D. Tao; M. Tápai; A. Tapia; E. N. Tapia San Martin; J. D. Tasson; R. Taylor; R. Tenorio; L. Terkowski; M. P. Thirugnanasambandam; M. Thomas; P. Thomas; J. E. Thompson; S. R. Thondapu; K. A. Thorne; E. Thrane; C. L. Tinsman; T. R. Saravanan; Shubhanshu Tiwari; S. Tiwari; V. Tiwari; K. Toland; M. Tonelli; Z. Tornasi; A. Torres-Forné; C. I. Torrie; I. Tosta e Melo; D. Töyrä; E. A. Trail; F. Travasso; G. Traylor; M. C. Tringali; A. Tripathee; A. Trovato; R. J. Trudeau; K. W. Tsang; M. Tse; R. Tso; L. Tsukada; D. Tsuna; T. Tsutsui; M. Turconi; A. S. Ubhi; K. Ueno; D. Ugolini; C. S. Unnikrishnan; A. L. Urban; S. A. Usman; A. C. Utina; H. Vahlbruch; G. Vajente; G. Valdes; M. Valentini; N. van Bakel; M. van Beuzekom; J. F. J. van den Brand; C. Van Den Broeck; D. C. Vander-Hyde; L. van der Schaaf; J. V. Van Heijningen; A. A. van Veggel; M. Vardaro; V. Varma; S. Vass; M. Vasúth; A. Vecchio; G. Vedovato; J. Veitch; P. J. Veitch; K. Venkateswara; G. Venugopalan; D. Verkindt; D. Veske; F. Vetrano; A. Viceré; A. D. Viets; S. Vinciguerra; D. J. Vine; J.-Y. Vinet; S. Vitale; Francisco Hernandez Vivanco; T. Vo; H. Vocca; C. Vorvick; S. P. Vyatchanin; A. R. Wade; L. E. Wade; M. Wade; R. Walet; M. Walker; G. S. Wallace; L. Wallace; S. Walsh; J. Z. Wang; S. Wang; W. H. Wang; R. L. Ward; Z. A. Warden; J. Warner; M. Was; J. Watchi; B. Weaver; L.-W. Wei; M. Weinert; A. J. Weinstein; R. Weiss; F. Wellmann; L. Wen; P. Weßels; J. W. Westhouse; K. Wette; J. T. Whelan; B. F. Whiting; C. Whittle; D. M. Wilken; D. Williams; J. L. Willis; B. Willke; W. Winkler; C. C. Wipf; H. Wittel; G. Woan; J. Woehler; J. K. Wofford; C. Wong; J. L. Wright; D. S. Wu; D. M. Wysocki; L. Xiao; H. Yamamoto; L. Yang; Y. Yang; Z. Yang; M. J. Yap; M. Yazback; D. W. Yeeles; Hang Yu; Haocun Yu; S. H. R. Yuen; A. K. Zadrożny; A. Zadrożny; M. Zanolin; T. Zelenova; J.-P. Zendri; M. Zevin; J. Zhang; L. Zhang; T. Zhang; C. Zhao; G. Zhao; M. Zhou; Z. Zhou; X. J. Zhu; A. B. Zimmerman; M. E. Zucker; J. Zweizig
<jats:title>Abstract</jats:title> <jats:p>We report the observation of a compact binary coalescence involving a 22.2–24.3 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> black hole and a compact object with a mass of 2.50–2.67 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg<jats:sup>2</jats:sup> at a distance of <jats:inline-formula> <jats:tex-math> <?CDATA ${241}_{-45}^{+41}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab960fieqn1.gif" xlink:type="simple" /> </jats:inline-formula> Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, <jats:inline-formula> <jats:tex-math> <?CDATA ${0.112}_{-0.009}^{+0.008}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlab960fieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ≤0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc<jats:sup>−3</jats:sup> yr<jats:sup>−1</jats:sup> for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L44