Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal (ApJ)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 1995 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0004-637X

ISSN electrónico

1538-4357

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data

R. AbbasiORCID; M. AckermannORCID; J. Adams; J. A. AguilarORCID; M. AhlersORCID; M. Ahrens; J. M. AlameddineORCID; C. Alispach; A. A. Alves Jr.; N. M. Amin; K. Andeen; T. Anderson; G. AntonORCID; C. ArgüellesORCID; Y. Ashida; S. Axani; X. Bai; A. Balagopal V.ORCID; A. BarbanoORCID; S. W. BarwickORCID; B. Bastian; V. BasuORCID; S. BaurORCID; R. Bay; J. J. BeattyORCID; K.-H. BeckerORCID; J. Becker Tjus; C. Bellenghi; S. BenZviORCID; D. Berley; E. BernardiniORCID; D. Z. Besson; G. Binder; D. Bindig; E. BlaufussORCID; S. BlotORCID; M. Boddenberg; F. Bontempo; J. Borowka; S. BöserORCID; O. BotnerORCID; J. Böttcher; E. Bourbeau; F. BradascioORCID; J. Braun; B. Brinson; S. Bron; J. Brostean-Kaiser; S. Browne; A. BurgmanORCID; R. T. Burley; R. S. Busse; M. A. CampanaORCID; E. G. Carnie-Bronca; C. ChenORCID; Z. Chen; D. ChirkinORCID; K. Choi; B. A. ClarkORCID; K. ClarkORCID; L. Classen; A. ColemanORCID; G. H. Collin; J. M. ConradORCID; P. CoppinORCID; P. CorreaORCID; D. F. Cowen; R. CrossORCID; C. Dappen; P. DaveORCID; C. De ClercqORCID; J. J. DeLaunayORCID; D. Delgado LópezORCID; H. DembinskiORCID; K. Deoskar; A. DesaiORCID; P. DesiatiORCID; K. D. de VriesORCID; G. de WasseigeORCID; M. de With; T. DeYoungORCID; A. DiazORCID; J. C. Díaz-VélezORCID; M. Dittmer; H. DujmovicORCID; M. Dunkman; M. A. DuVernoisORCID; E. Dvorak; T. Ehrhardt; P. EllerORCID; R. Engel; H. Erpenbeck; J. Evans; P. A. Evenson; K. L. Fan; A. R. FazelyORCID; N. Feigl; S. Fiedlschuster; A. T. Fienberg; K. Filimonov; C. FinleyORCID; L. Fischer; D. FoxORCID; A. FranckowiakORCID; E. Friedman; A. Fritz; P. FürstORCID; T. K. GaisserORCID; J. Gallagher; E. GansterORCID; A. GarciaORCID; S. GarrappaORCID; L. Gerhardt; A. GhadimiORCID; C. Glaser; T. GlauchORCID; T. GlüsenkampORCID; J. G. Gonzalez; S. Goswami; D. Grant; T. Grégoire; S. GriswoldORCID; C. Günther; P. GutjahrORCID; C. Haack; A. HallgrenORCID; R. Halliday; L. HalveORCID; F. HalzenORCID; M. Ha Minh; K. Hanson; J. Hardin; A. A. Harnisch; A. HaungsORCID; D. Hebecker; K. HelbingORCID; F. HenningsenORCID; E. C. Hettinger; S. Hickford; J. Hignight; C. HillORCID; G. C. Hill; K. D. Hoffman; R. Hoffmann; B. Hokanson-Fasig; K. Hoshina; F. HuangORCID; M. Huber; T. HuberORCID; K. Hultqvist; M. Hünnefeld; R. Hussain; K. Hymon; S. In; N. IovineORCID; A. Ishihara; M. Jansson; G. S. JaparidzeORCID; M. Jeong; M. Jin; B. J. P. JonesORCID; D. KangORCID; W. KangORCID; X. Kang; A. KappesORCID; D. Kappesser; L. Kardum; T. KargORCID; M. KarlORCID; A. KarleORCID; U. KatzORCID; M. KauerORCID; M. Kellermann; J. L. KelleyORCID; A. KheirandishORCID; K. Kin; T. Kintscher; J. Kiryluk; S. R. KleinORCID; R. KoiralaORCID; H. KolanoskiORCID; T. Kontrimas; L. Köpke; C. KopperORCID; S. Kopper; D. J. KoskinenORCID; P. KoundalORCID; M. KovacevichORCID; M. KowalskiORCID; T. Kozynets; E. Kun; N. KurahashiORCID; N. Lad; C. Lagunas GualdaORCID; J. L. Lanfranchi; M. J. LarsonORCID; F. LauberORCID; J. P. LazarORCID; J. W. Lee; K. LeonardORCID; A. LeszczyńskaORCID; Y. Li; M. Lincetto; Q. R. LiuORCID; M. Liubarska; E. Lohfink; C. J. Lozano Mariscal; L. LuORCID; F. LucarelliORCID; A. LudwigORCID; W. LuszczakORCID; Y. LyuORCID; W. Y. MaORCID; J. MadsenORCID; K. B. M. Mahn; Y. Makino; S. Mancina; I. C. MarişORCID; I. Martinez-Soler; R. MaruyamaORCID; K. Mase; T. McElroy; F. McNallyORCID; J. V. Mead; K. MeagherORCID; S. Mechbal; A. Medina; M. MeierORCID; S. Meighen-BergerORCID; J. Micallef; D. Mockler; T. MontaruliORCID; R. W. MooreORCID; R. Morse; M. MoulaiORCID; R. NaabORCID; R. NagaiORCID; U. Naumann; J. NeckerORCID; L. V. Nguyễn; H. NiederhausenORCID; M. U. NisaORCID; S. C. Nowicki; A. Obertacke PollmannORCID; M. Oehler; B. OeyenORCID; A. Olivas; E. O’SullivanORCID; H. PandyaORCID; D. V. Pankova; N. ParkORCID; G. K. Parker; E. N. PaudelORCID; L. Paul; C. Pérez de los HerosORCID; L. Peters; J. Peterson; S. Philippen; S. Pieper; M. Pittermann; A. PizzutoORCID; M. PlumORCID; Y. Popovych; A. PorcelliORCID; M. Prado Rodriguez; P. B. Price; B. Pries; G. T. Przybylski; C. RaabORCID; A. Raissi; M. RameezORCID; K. Rawlins; I. C. Rea; A. RehmanORCID; P. Reichherzer; R. ReimannORCID; G. Renzi; E. ResconiORCID; S. Reusch; W. RhodeORCID; M. Richman; B. RiedelORCID; E. J. Roberts; S. Robertson; G. Roellinghoff; M. RongenORCID; C. RottORCID; T. Ruhe; D. Ryckbosch; D. Rysewyk CantuORCID; I. SafaORCID; J. Saffer; S. E. Sanchez Herrera; A. SandrockORCID; J. SandroosORCID; M. SantanderORCID; S. SarkarORCID; S. SarkarORCID; K. SataleckaORCID; M. Schaufel; H. Schieler; S. Schindler; T. Schmidt; A. SchneiderORCID; J. SchneiderORCID; F. G. SchröderORCID; L. Schumacher; G. Schwefer; S. SclafaniORCID; D. Seckel; S. Seunarine; A. Sharma; S. Shefali; M. SilvaORCID; B. Skrzypek; B. SmithersORCID; R. Snihur; J. Soedingrekso; D. Soldin; C. Spannfellner; G. M. SpiczakORCID; C. SpieringORCID; J. Stachurska; M. Stamatikos; T. Stanev; R. SteinORCID; J. StettnerORCID; A. Steuer; T. StezelbergerORCID; T. Stürwald; T. StuttardORCID; G. W. SullivanORCID; I. TaboadaORCID; S. Ter-AntonyanORCID; S. Tilav; F. Tischbein; K. TollefsonORCID; C. Tönnis; S. ToscanoORCID; D. Tosi; A. Trettin; M. Tselengidou; C. F. TungORCID; A. Turcati; R. Turcotte; C. F. TurleyORCID; J. P. Twagirayezu; B. Ty; M. A. Unland ElorrietaORCID; N. Valtonen-Mattila; J. VandenbrouckeORCID; N. van EijndhovenORCID; D. Vannerom; J. van SantenORCID; S. VerpoestORCID; C. Walck; T. B. WatsonORCID; C. WeaverORCID; P. Weigel; A. Weindl; M. J. Weiss; J. Weldert; C. WendtORCID; J. Werthebach; M. Weyrauch; N. WhitehornORCID; C. H. WiebuschORCID; D. R. Williams; M. WolfORCID; K. Woschnagg; G. Wrede; J. Wulff; X. W. Xu; J. P. Yanez; S. YoshidaORCID; S. Yu; T. YuanORCID; Z. Zhang; P. Zhelnin

<jats:title>Abstract</jats:title> <jats:p>We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of <jats:inline-formula> <jats:tex-math> <?CDATA ${\phi }_{@100\mathrm{TeV}}^{{\nu }_{\mu }+{\bar{\nu }}_{\mu }}={1.44}_{-0.26}^{+0.25}\times {10}^{-18}\,{\mathrm{GeV}}^{-1}{\mathrm{cm}}^{-2}{{\rm{s}}}^{-1}{\mathrm{sr}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>ϕ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>@</mml:mo> <mml:mn>100</mml:mn> <mml:mi>TeV</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mrow> <mml:mover accent="true"> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>¯</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>1.44</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.26</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.25</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>18</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>GeV</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi>cm</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mi>sr</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac4d29ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and a spectral index <jats:inline-formula> <jats:tex-math> <?CDATA ${\gamma }_{\mathrm{SPL}}={2.37}_{-0.09}^{+0.09}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>SPL</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.37</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac4d29ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 50

A Systematic Exploration of Kilonova Candidates from Neutron Star Mergers during the Third Gravitational-wave Observing Run

J. C. RastinejadORCID; K. PatersonORCID; W. FongORCID; D. J. SandORCID; M. J. LundquistORCID; G. HosseinzadehORCID; E. Christensen; P. N. Daly; A. R. GibbsORCID; S. HallORCID; F. Shelly; S. YangORCID

<jats:title>Abstract</jats:title> <jats:p>We present a comprehensive analysis of 653 optical candidate counterparts reported during the third gravitational-wave (GW) observing run. Our sample concentrates on candidates from the 15 events (published in GWTC-2, GWTC-3, or not retracted on GraceDB) that had a &gt;1% chance of including a neutron star in order to assess their viability as true kilonovae. In particular, we leverage tools available in real time, including pre-merger detections and cross-matching with catalogs (i.e., point-source, variable-star, quasar and host-galaxy redshift data sets), to eliminate 65% of candidates in our sample. We further employ spectroscopic classifications, late-time detections, and light-curve behavior analyses and conclude that 66 candidates remain viable kilonovae. These candidates lack sufficient information to determine their classifications, and the majority would require luminosities greater than that of AT 2017gfo. Pre-merger detections in public photometric survey data and comparison of cataloged host-galaxy redshifts with the GW event distances are critical to incorporate into vetting procedures, as these tools eliminated &gt;20% and &gt;30% of candidates, respectively. We expect that such tools that leverage archival information will significantly reduce the strain on spectroscopic and photometric follow-up resources in future observing runs. Finally, we discuss the critical role prompt updates from GW astronomers to the EM community play in reducing the number of candidates requiring vetting.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 50

Longitudinally Modulated Dynamo Action in Simulated M-dwarf Stars

Connor P. BiceORCID; Juri ToomreORCID

<jats:title>Abstract</jats:title> <jats:p>M-dwarf stars are well known for the intense magnetic activity that many of them exhibit. In cool stars with near-surface convection zones, this magnetic activity is thought to be driven largely by the interplay of convection and the large-scale differential rotation and circulations it establishes. The highly nonlinear nature of these flows yields a fascinatingly sensitive and diverse parameter space, with a wide range of possible dynamics. We report here on a set of three global MHD simulations of rapidly rotating M2 (0.4 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>) stars. Each of these three models established nests of vigorous convection that were highly modulated in longitude at low latitudes. Slight differences in their magnetic parameters led each model to disparate dynamo states, but the effect of the convective nest was a unifying feature. In each case, the action of longitudinally modulated convection led to localized (and in one case, global) reversals of the toroidal magnetic field, as well as the formation of an active longitude, with enhanced poloidal field amplitudes and flux emergence.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 51

Polarization of Rotationally Oblate Self-luminous Exoplanets with Anisotropic Atmospheres

Aritra ChakrabartyORCID; Sujan SenguptaORCID; Mark S. MarleyORCID

<jats:title>Abstract</jats:title> <jats:p>The young self-luminous giant exoplanets are expected to be oblate in shape, owing to the high rotational speeds observed for some objects. Similar to the case of brown dwarfs, the thermal emission from these planets should be polarized by scatterings of molecules and condensate cloud particles, and the rotation-induced asymmetry of the planet’s disk would yield to net nonzero detectable polarization. Considering an anisotropic atmosphere, we present here a three-dimensional approach to estimating the disk-averaged polarization that arises due to the oblateness of the planets. We solve the multiple-scattering vector radiative transfer equations at each location on the planet’s disk and calculate the local Stokes vectors, and then calculate the disk-integrated flux and linear polarization. For a cloud-free atmosphere, the polarization signal is observable only in the visible wavelength region. However, the presence of clouds in the planetary atmospheres leads to a detectable amount of polarization in the infrared wavelength region where the planetary thermal emission peaks. Considering the different broadband filters of the SPHERE-IRDIS instrument of the Very Large Telescope, we present generic models for the polarization at different wavelength bands as a function of their rotation period. We also present polarization models for the exoplanets <jats:italic>β</jats:italic> Pic b and ROXs 42B b, as two representative cases that can guide future observations. Our insights into the polarization of young giant planets presented here would be useful for the upcoming polarimetric observations of the directly imaged planets.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 51

A Census of the Bright z = 8.5–11 Universe with the Hubble and Spitzer Space Telescopes in the CANDELS Fields

Steven L. FinkelsteinORCID; Micaela BagleyORCID; Mimi SongORCID; Rebecca LarsonORCID; Casey PapovichORCID; Mark DickinsonORCID; Keely D. FinkelsteinORCID; Anton M. KoekemoerORCID; Norbert Pirzkal; Rachel S. Somerville; L. Y. Aaron YungORCID; Peter Behroozi; Harry FergusonORCID; Mauro GiavaliscoORCID; Norman GroginORCID; Nimish HathiORCID; Taylor A. HutchisonORCID; Intae JungORCID; Dale Kocevski; Lalitwadee KawinwanichakijORCID; Sofía Rojas-RuizORCID; Russell RyanORCID; Gregory F. SnyderORCID; Sandro TacchellaORCID

<jats:title>Abstract</jats:title> <jats:p>We present the results from a new search for candidate galaxies at <jats:italic>z</jats:italic> ≈ 8.5–11 discovered over the 850 arcmin<jats:sup>2</jats:sup> area probed by the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS). We use a photometric-redshift selection including both Hubble and Spitzer Space Telescope photometry to robustly identify galaxies in this epoch at <jats:italic>H</jats:italic> <jats:sub>160</jats:sub> &lt; 26.6. We use a detailed vetting procedure, including screening against persistence and stellar contamination, and the inclusion of ground-based imaging and follow-up Hubble Space Telescope imaging to build a robust sample of 11 candidate galaxies, three presented here for the first time. The inclusion of Spitzer/IRAC photometry in the selection process reduces contamination, and yields more robust redshift estimates than Hubble alone. We constrain the evolution of the rest-frame ultraviolet luminosity function via a new method of calculating the observed number densities without choosing a prior magnitude bin size. We find that the abundance at our brightest probed luminosities (<jats:italic>M</jats:italic> <jats:sub>UV</jats:sub> = − 22.3) is consistent with predictions from simulations that assume that galaxies in this epoch have gas depletion times at least as short as those in nearby starburst galaxies. Due to large Poisson and cosmic variance uncertainties, we cannot conclusively rule out either a smooth evolution of the luminosity function continued from <jats:italic>z</jats:italic> = 4–8, or an accelerated decline at <jats:italic>z</jats:italic> &gt; 8. We calculate that the presence of seven galaxies in a single field Extended Groth Strip is an outlier at the 2<jats:italic>σ</jats:italic> significance level, implying the discovery of a significant over-density. These scenarios will be imminently testable to high confidence within the first year of observations of the James Webb Space Telescope.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 52

Resilience of Planetesimal Formation in Weakly Reinforced Pressure Bumps

Daniel CarreraORCID; Andrew J. Thomas; Jacob B. SimonORCID; Matthew A. Small; Katherine A. KretkeORCID; Hubert KlahrORCID

<jats:title>Abstract</jats:title> <jats:p>The discovery that axisymmetric dust rings are ubiquitous in protoplanetary disks has provoked a flurry of research on the role of pressure bumps in planet formation. High-resolution simulations by our group have shown that even a modest bump can collect enough dust to trigger planetesimal formation by the streaming instability. In this work, we probe the limits of planetesimal formation when the external source of pressure bump reinforcement is extremely weak. We conduct simulations of radially elongated shearing boxes to capture the entire bump, which is generated and maintained over some timescale <jats:inline-formula> <jats:tex-math> <?CDATA ${t}_{\mathrm{reinf}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>reinf</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac4d28ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> by a Newtonian relaxation scheme. We find that planetesimal formation is extremely resilient for centimeter-sized grains. We reduced the strength of reinforcement by up to a factor of 100 and the location and initial masses of planetesimals were essentially unaffected. However, we do find that strong reinforcement causes much faster pebble drift compared to the standard pebble drift rates. The resulting larger pebble flux enhances the planetesimal growth rate by pebble accretion. We hypothesize that, to sustain the bump, our code has to extract angular momentum (the strength of this negative torque depends on <jats:inline-formula> <jats:tex-math> <?CDATA ${t}_{\mathrm{reinf}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>reinf</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac4d28ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>), and some of this torque is transferred to the particles, causing them to drift faster for a stronger torque (i.e., smaller <jats:inline-formula> <jats:tex-math> <?CDATA ${t}_{\mathrm{reinf}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>reinf</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac4d28ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>). Since any physical process that sustains a pressure bump must do so by torquing the gas, we conjecture that the effect on pebble drift is a real phenomenon, motivating further work with physically realistic sources to generate the bump.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 52

Nonaxisymmetric Precession of Magnetars and Fast Radio Bursts

I. WassermanORCID; J. M. CordesORCID; S. ChatterjeeORCID; G. BatraORCID

<jats:title>Abstract</jats:title> <jats:p>The repeating fast radio bursts (FRBs) 180916.J0158 and 121102 are visible during periodically occurring windows in time. We consider the constraints on internal magnetic fields and geometries if the cyclical behavior observed for FRB 180916.J0158 and FRB 121102 is due to the precession of magnetars. In order to frustrate vortex line pinning we argue that internal magnetic fields must be stronger than about 10<jats:sup>16</jats:sup> G, which is large enough to prevent superconductivity in the core and destroy the crustal lattice structure. We conjecture that the magnetic field inside precessing magnetars has three components: (1) a dipole component with characteristic strength ∼ 10<jats:sup>14</jats:sup> G; (2) a toroidal component with characteristic strength ∼ 10<jats:sup>15</jats:sup>–10<jats:sup>16</jats:sup> G that only occupies a modest fraction of the stellar volume; and (3) a disordered field with characteristic strength ∼ 10<jats:sup>16</jats:sup> G. The disordered field is primarily responsible for permitting precession, which stops once this field component decays away, which we conjecture happens after ∼1000 yr. Conceivably, as the disordered component damps bursting activity diminishes and eventually ceases. We model the quadrupolar magnetic distortion of the star, which is due to its ordered components primarily, as triaxial and very likely prolate. We address the question of whether the spin frequency ought to be detectable for precessing, bursting magnetars by constructing a specific model in which bursts happen randomly in time with random directions distributed in or between cones relative to a single symmetry axis. Within the context of these specific models, we find that there are precession geometries for which detecting the spin frequency is very unlikely.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 53

Detecting Preheating in Protoclusters with Lyα Forest Tomography

Robin KooistraORCID; Shigeki InoueORCID; Khee-Gan LeeORCID; Renyue CenORCID; Naoki YoshidaORCID

<jats:title>Abstract</jats:title> <jats:p>Studies of low-redshift galaxy clusters suggest the intracluster medium (ICM) has experienced nongravitational heating during the formation phase of the clusters. Using simple phenomenological heating prescriptions, we simulate the effect of this preheating of the nascent ICM in galaxy protoclusters and examine its effect on Ly<jats:italic>α</jats:italic> forest tomographic maps. We analyze a series of cosmological zoom-in simulations of protoclusters within the framework of the Ly<jats:italic>α</jats:italic> transmission−dark matter (DM) density distribution. We find that the more energy is injected into the proto-ICM at <jats:italic>z</jats:italic> = 3, the more the distribution at high DM density tilts toward higher Ly<jats:italic>α</jats:italic> transmission. This effect has been confirmed in both low-resolution simulations adopting a preheating scheme based on entropy floors, as well as in higher-resolution simulations with another scheme based on energy floors. The evolution of the slope of this distribution is shown to vary with redshift. The methodology developed here can be applied to current and upcoming Ly<jats:italic>α</jats:italic> forest tomographic survey data to help constrain feedback models in galaxy protoclusters.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 53

Testing the Momentum-driven Supernova Feedback Paradigm in M31

Sumit K. SarbadhicaryORCID; Davide Martizzi; Enrico Ramirez-RuizORCID; Eric KochORCID; Katie AuchettlORCID; Carles BadenesORCID; Laura ChomiukORCID

<jats:title>Abstract</jats:title> <jats:p>Momentum feedback from isolated supernova remnants (SNRs) have been increasingly recognized by modern cosmological simulations as a resolution-independent means to implement the effects of feedback in galaxies, such as turbulence and winds. However, the integrated momentum yield from SNRs is uncertain due to the effects of SN clustering and interstellar medium (ISM) inhomogeneities. In this paper, we use spatially resolved observations of the prominent 10 kpc star-forming ring of M31 to test models of mass-weighted ISM turbulence driven by momentum feedback from isolated, nonoverlapping SNRs. We use a detailed stellar age distribution (SAD) map from the Panchromatic Hubble Andromeda Treasury survey, observationally constrained SN delay-time distributions, and maps of the atomic and molecular hydrogen to estimate the mass-weighted velocity dispersion using the Martizzi et al. ISM turbulence model. Our estimates are within a factor of two of the observed mass-weighted velocity dispersion in most of the ring, but exceed observations at densities ≲0.2 cm<jats:sup>−3</jats:sup> and SN rates &gt;2.1 × 10<jats:sup>−4</jats:sup> SN yr<jats:sup>−1</jats:sup> kpc<jats:sup>−2</jats:sup>, even after accounting for plausible variations in SAD models and ISM scale height assumptions. We conclude that at high SN rates the momentum deposited is most likely suppressed by the nonlinear effects of SN clustering, while at low densities, SNRs reach pressure equilibrium before the cooling phase. These corrections should be introduced in models of momentum-driven feedback and ISM turbulence.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 54

Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III

Satoshi OhashiORCID; Claudio CodellaORCID; Nami SakaiORCID; Claire J. ChandlerORCID; Cecilia CeccarelliORCID; Felipe AlvesORCID; Davide Fedele; Tomoyuki HanawaORCID; Aurora DuránORCID; Cécile FavreORCID; Ana López-SepulcreORCID; Laurent LoinardORCID; Seyma MercimekORCID; Nadia M. Murillo; Linda PodioORCID; Yichen ZhangORCID; Yuri AikawaORCID; Nadia BalucaniORCID; Eleonora BianchiORCID; Mathilde BouvierORCID; Gemma BusquetORCID; Paola CaselliORCID; Emmanuel CauxORCID; Steven CharnleyORCID; Spandan ChoudhuryORCID; Nicolas CuelloORCID; Marta De SimoneORCID; Francois DulieuORCID; Lucy Evans; Siyi FengORCID; Francesco Fontani; Logan FrancisORCID; Tetsuya HamaORCID; Eric HerbstORCID; Shingo HiranoORCID; Tomoya HirotaORCID; Muneaki ImaiORCID; Andrea IsellaORCID; Izaskun Jímenez-SerraORCID; Doug JohnstoneORCID; Claudine KahaneORCID; Romane Le GalORCID; Bertrand LeflochORCID; Luke T. MaudORCID; Maria Jose MaureiraORCID; Francois MenardORCID; Anna MiotelloORCID; George MoellenbrockORCID; Shoji MoriORCID; Riouhei NakataniORCID; Hideko NomuraORCID; Yasuhiro ObaORCID; Ross O’Donoghue; Yuki OkodaORCID; Juan Ospina-Zamudio; Yoko OyaORCID; Jaime PinedaORCID; Albert RimolaORCID; Takeshi SakaiORCID; Dominique Segura-CoxORCID; Yancy Shirley; Brian SvobodaORCID; Vianney TaquetORCID; Leonardo TestiORCID; Charlotte VastelORCID; Serena VitiORCID; Naoki WatanabeORCID; Yoshimasa WatanabeORCID; Arezu Witzel; Ci XueORCID; Bo Zhao; Satoshi YamamotoORCID

<jats:title>Abstract</jats:title> <jats:p>We report a study of the low-mass Class 0 multiple system VLA 1623AB in the Ophiuchus star-forming region, using H<jats:sup>13</jats:sup>CO<jats:sup>+</jats:sup> (<jats:italic>J</jats:italic> = 3–2), CS (<jats:italic>J</jats:italic> = 5–4), and CCH (<jats:italic>N</jats:italic> = 3–2) lines as part of the ALMA Large Program FAUST. The analysis of the velocity fields revealed the rotation motion in the envelope and the velocity gradients in the outflows (about 2000 au down to 50 au). We further investigated the rotation of the circumbinary VLA 1623A disk, as well as the VLA 1623B disk. We found that the minor axis of the circumbinary disk of VLA 1623A is misaligned by about 12° with respect to the large-scale outflow and the rotation axis of the envelope. In contrast, the minor axis of the circumbinary disk is parallel to the large-scale magnetic field according to previous dust polarization observations, suggesting that the misalignment may be caused by the different directions of the envelope rotation and the magnetic field. If the velocity gradient of the outflow is caused by rotation, the outflow has a constant angular momentum and the launching radius is estimated to be 5–16 au, although it cannot be ruled out that the velocity gradient is driven by entrainments of the two high-velocity outflows. Furthermore, we detected for the first time a velocity gradient associated with rotation toward the VLA 16293B disk. The velocity gradient is opposite to the one from the large-scale envelope, outflow, and circumbinary disk. The origin of its opposite gradient is also discussed.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 54