Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Power-law Inflation in the f(R) Gravity
Ajay Kumar Sharma; Murli Manohar Verma
<jats:title>Abstract</jats:title> <jats:p>We investigate a form of <jats:inline-formula> <jats:tex-math> <?CDATA $f(R)={R}^{1+\delta }/{R}_{c}^{\delta }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>δ</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac3ed7ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and study the viability of the model for inflation in the Jordan and the Einstein frames. We have extended this form to <jats:inline-formula> <jats:tex-math> <?CDATA $f(R)=R+{R}^{1+\delta }/{R}_{c}^{\delta }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msubsup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>δ</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac3ed7ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> in an attempt to solve the problems of the former model. This model is further analyzed by using the power spectrum indices of inflation and the reheating temperature. During the inflationary evolution, the model predicts a value of the <jats:italic>δ</jats:italic> parameter very close to one (<jats:italic>δ</jats:italic> = 0.98), while the reheating temperature <jats:inline-formula> <jats:tex-math> <?CDATA ${T}_{\mathrm{re}}\sim {10}^{16}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>re</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>16</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac3ed7ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> GeV at <jats:italic>δ</jats:italic> = 0.98 is consistent with the standard approach to inflation and observations. We calculate the slow roll parameters for the minimally coupled scalar field within the framework of our models. It is found that the values of the scalar spectral index and tensor-to-scalar ratio are very close to the recent observational data, including those released by Planck. Further, we find the scalar spectral index and the tensor-to-scalar ratio are exactly the same in the first model because the Jordan and the Einstein frames are conformally equivalent. We also attempt to provide a constraint through the non-Gaussianity parameter.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 29
Triaxial Orbit-based Dynamical Modeling of Galaxies with Supermassive Black Holes and an Application to Massive Elliptical Galaxy NGC 1453
Matthew E. Quenneville; Christopher M. Liepold; Chung-Pei Ma
<jats:title>Abstract</jats:title> <jats:p>Most stellar-dynamical determinations of the masses of nearby supermassive black holes (SMBHs) have been obtained with the orbit superposition technique under the assumption of axisymmetry. However, few galaxies—in particular massive early-type galaxies—obey exact axisymmetry. Here we present a revised orbit superposition code and a new approach for dynamically determining the intrinsic shapes and mass parameters of triaxial galaxies based on spatially resolved stellar kinematic data. The triaxial TriOS code described here corrects an error in the original van den Bosch et al. code that gives rise to incorrect projections for most orbits in triaxial models and can significantly impact parameter search results. The revised code also contains significant improvements in orbit sampling, mass constraints, and run time. Furthermore, we introduce two new parameter-searching strategies—a new set of triaxial shape parameters and a novel grid-free sampling technique—that together lead to a remarkable gain in efficiency in locating the best-fit model. We apply the updated code and search method to NGC 1453, a fast-rotating massive elliptical galaxy. A full 6D parameter search finds <jats:inline-formula> <jats:tex-math> <?CDATA $p=b/a={0.933}_{-0.015}^{+0.014}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mi>b</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>0.933</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.015</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.014</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac3e68ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:italic>q</jats:italic> = <jats:italic>c</jats:italic>/<jats:italic>a</jats:italic> = 0.779 ± 0.012 for the intrinsic axis ratios and <jats:italic>T</jats:italic> = 0.33 ± 0.06 for the triaxiality parameter. Despite the deviations from axisymmetry, the best-fit SMBH mass, stellar mass-to-light ratio, and dark matter enclosed mass for NGC 1453 are consistent with the axisymmetric results. More comparisons between axisymmetric and triaxial modeling are needed before drawing general conclusions.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 30
The Effects of Stellar Population and Gas Covering Fraction on the Emergent Lyα Emission of High-redshift Galaxies*
Naveen A. Reddy; Michael W. Topping; Alice E. Shapley; Charles C. Steidel; Ryan L. Sanders; Xinnan Du; Alison L. Coil; Bahram Mobasher; Sedona H. Price; Irene Shivaei
<jats:title>Abstract</jats:title> <jats:p>We perform joint modeling of the composite rest-frame far-UV and optical spectra of redshift 1.85 ≤ <jats:italic>z</jats:italic> ≤ 3.49 star-forming galaxies to deduce key properties of the massive stars, ionized interstellar medium (ISM), and neutral ISM, with the aim of investigating the principal factors affecting the production and escape of Ly<jats:italic>α</jats:italic> photons. Our sample consists of 136 galaxies with deep Keck/LRIS and MOSFIRE spectra covering, respectively, Ly<jats:italic>β</jats:italic> through C <jats:sc>iii</jats:sc>] <jats:italic>λλ</jats:italic>1907, 1909 and [O <jats:sc>ii</jats:sc>], [Ne <jats:sc>iii</jats:sc>], H<jats:italic>β</jats:italic>, [O <jats:sc>iii</jats:sc>], H<jats:italic>α</jats:italic>, [N <jats:sc>ii</jats:sc>], and [S <jats:sc>ii</jats:sc>]. Spectral and photoionization modeling indicates that the galaxies are uniformly consistent with stellar population synthesis models that include the effects of stellar binarity. Over the dynamic range of our sample, there is little variation in stellar and nebular abundance with Ly<jats:italic>α</jats:italic> equivalent width, <jats:italic>W</jats:italic> <jats:sub> <jats:italic>λ</jats:italic> </jats:sub>(Ly<jats:italic>α</jats:italic>), and only a marginal anticorrelation between age and <jats:italic>W</jats:italic> <jats:sub> <jats:italic>λ</jats:italic> </jats:sub>(Ly<jats:italic>α</jats:italic>). The inferred range of ionizing spectral shapes is insufficient to solely account for the variation in <jats:italic>W</jats:italic> <jats:sub> <jats:italic>λ</jats:italic> </jats:sub>(Ly<jats:italic>α</jats:italic>); rather, the covering fraction of optically thick H <jats:sc>i</jats:sc> appears to be the principal factor modulating the escape of Ly<jats:italic>α</jats:italic>, with most of the Ly<jats:italic>α</jats:italic> photons in down-the-barrel observations of galaxies escaping through low column density or ionized channels in the ISM. Our analysis shows that a high star-formation-rate surface density, Σ<jats:sub>SFR</jats:sub>, particularly when coupled with a low galaxy potential (i.e., low stellar mass), can aid in reducing the covering fraction and ease the escape of Ly<jats:italic>α</jats:italic> photons. We conclude with a discussion of the implications of our results for the escape of ionizing radiation at high redshift.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 31
K-band Imaging of the Nearby Clumpy, Turbulent Disk Galaxy DYNAMO G04-1
Heidi A. White; Deanne B. Fisher; Roberto G. Abraham; Karl Glazebrook; Danail Obreschkow
<jats:title>Abstract</jats:title> <jats:p>We present a case study of the stellar clumps in G04-1—a clumpy, turbulent disk galaxy located at <jats:italic>z</jats:italic> = 0.13—from the DYnamics of Newly-Assembled Massive Objects sample, using adaptive optics-enabled <jats:italic>K</jats:italic>-band imaging (∼2.25 kpc arcsec<jats:sup>−1</jats:sup>) with Keck-NIRC2. We identify 15 stellar clumps in G04-1 with a range of masses from 3.6 × 10<jats:sup>6</jats:sup>–2.7 × 10<jats:sup>8</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, and a median mass of ∼ 2.9 × 10<jats:sup>7</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. Note that these masses decrease by about half when we apply a light correction for the underlying stellar disk. A majority (12 of 15) of the clumps observed in the <jats:italic>K</jats:italic> <jats:sub> <jats:italic>P</jats:italic> </jats:sub>-band imaging have associated components in H<jats:italic>α</jats:italic> maps (∼2.75 kpc arcsec<jats:sup>−1</jats:sup>; <R<jats:sub>clump</jats:sub> > ∼ 500 pc) and appear colocated (<jats:inline-formula> <jats:tex-math> <?CDATA $\overline{{\rm{\Delta }}x}\sim 0\buildrel{\prime\prime}\over{.} 1$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover accent="true"> <mml:mrow> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow> <mml:mo stretchy="true">¯</mml:mo> </mml:mrow> </mml:mover> <mml:mo>∼</mml:mo> <mml:mn>0</mml:mn> <mml:mo>.″</mml:mo> <mml:mn>1</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac3af4ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>). Using Hubble Space Telescope observations from the Wide Field Camera on the Advanced Camera for Surveys, with the F336W and F467M filters, we also find evidence of radial trends in the stellar properties of the clumps: the clumps closer to the center of G04-1 are more massive (consistent with observations in high-<jats:italic>z</jats:italic> systems) and appear more red, suggesting they may be more evolved. Using our high-resolution data, we construct a star-forming main sequence for G04-1 in terms of spatially resolved quantities, and find that all regions (both clump and intraclump) within the galaxy are experiencing an enhanced mode of star formation routinely observed in galaxies at high-<jats:italic>z</jats:italic>. In comparison to recent simulations, our observations of a number of clumps with masses of 10<jats:sup>7</jats:sup>–10<jats:sup>8</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> are not consistent with strong radiative feedback in this galaxy.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 32
Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands
Sumit Dahal; John W. Appel; Rahul Datta; Michael K. Brewer; Aamir Ali; Charles L. Bennett; Ricardo Bustos; Manwei Chan; David T. Chuss; Joseph Cleary; Jullianna D. Couto; Kevin L. Denis; Rolando Dünner; Joseph Eimer; Francisco Espinoza; Thomas Essinger-Hileman; Joseph E. Golec; Kathleen Harrington; Kyle Helson; Jeffrey Iuliano; John Karakla; Yunyang Li; Tobias A. Marriage; Jeffrey J. McMahon; Nathan J. Miller; Sasha Novack; Carolina Núñez; Keisuke Osumi; Ivan L. Padilla; Gonzalo A. Palma; Lucas Parker; Matthew A. Petroff; Rodrigo Reeves; Gary Rhoades; Karwan Rostem; Deniz A. N. Valle; Duncan J. Watts; Janet L. Weiland; Edward J. Wollack; Zhilei Xu
<jats:title>Abstract</jats:title> <jats:p>The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1° ≲ <jats:italic>θ</jats:italic> ≤ 90° with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS <jats:italic>Q</jats:italic>-band (40 GHz), <jats:italic>W</jats:italic>-band (90 GHz), and dichroic <jats:italic>G</jats:italic>-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 <jats:inline-formula> <jats:tex-math> <?CDATA $\mu {{\rm{K}}}_{\mathrm{cmb}}\sqrt{{\rm{s}}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>μ</mml:mi> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>cmb</mml:mi> </mml:mrow> </mml:msub> <mml:msqrt> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> </mml:msqrt> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac397cieqn1.gif" xlink:type="simple" /> </jats:inline-formula> for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 33
Probing Extremal Gravitational-wave Events with Coarse-grained Likelihoods
Reed Essick; Amanda Farah; Shanika Galaudage; Colm Talbot; Maya Fishbach; Eric Thrane; Daniel E. Holz
<jats:title>Abstract</jats:title> <jats:p>As catalogs of gravitational-wave transients grow, new records are set for the most extreme systems observed to date. The most massive observed black holes probe the physics of pair-instability supernovae while providing clues about the environments in which binary black hole systems are assembled. The least massive black holes, meanwhile, allow us to investigate the purported neutron star–black hole mass gap, and binaries with unusually asymmetric mass ratios or large spins inform our understanding of binary and stellar evolution. Existing outlier tests generally implement leave-one-out analyses, but these do not account for the fact that the event being left out was by definition an extreme member of the population. This results in a bias in the evaluation of outliers. We correct for this bias by introducing a coarse-graining framework to investigate whether these extremal events are true outliers or whether they are consistent with the rest of the observed population. Our method enables us to study extremal events while testing for population model misspecification. We show that this ameliorates biases present in the leave-one-out analyses commonly used within the gravitational-wave community. Applying our method to results from the second LIGO–Virgo transient catalog, we find qualitative agreement with the conclusions of Abbott et al. GW190814 is an outlier because of its small secondary mass. We find that neither GW190412 nor GW190521 is an outlier.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 34
Charge State Calculation for Global Solar Wind Modeling
J. Szente; E. Landi; B. van der Holst
<jats:title>Abstract</jats:title> <jats:p>The charge state composition of the solar wind carries information about the electron temperature, density, and velocity of plasma in the solar corona that cannot always be measured with remote sensing techniques, due to limitations in instrumental sensitivity and field of view as well as line-of-sight integration issues. However, in situ measurements of the wind charge state distribution only provide the end result of the solar wind evolution from the source region to the freeze-in point. By using 3D global modeling it is possible to follow solar wind plasma parcels of different origin along the path of their journey and study the evolution of their charge states as well as the driving physical processes. For this purpose, we implemented nonequilibrium ionization calculations within the Space Weather Modeling Framework’s solar corona and inner heliosphere modules, to the Alfvén Wave Solar Model (AWSoM). The charge state calculations are carried out parallel to the AWSoM calculations, including all the elements and ions whose ionization-recombination rates are included in the CHIANTI database, namely, from H to Zn. In this work, we describe the implementation of the charge state calculation, and compare simulation results to in situ measurements from the Advanced Composition Explorer and Ulysses spacecraft, and study charge state evolution of plasma parcels along different wind trajectories and wind types.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 35
Hydrodynamics of Clustered Clouds: Drafting, Survival, Condensation, and Ablation
M. Elliott Williams; Robin L. Shelton
<jats:title>Abstract</jats:title> <jats:p>For et al., who catalogued Magellanic Stream (MS) clouds, suggested that there is substantial large-scale turbulence in the MS. Here we follow up with a series of FLASH simulations that model the hydrodynamic effects that clouds have on each other. The suite of simulations includes a range of cloud separation distances and densities. The ambient conditions are similar to those surrounding the MS but also relevant to the circumgalactic medium and intergalactic medium. Ten simulations are presented, eight of which model clustered clouds and two of which model isolated clouds. The isolated clouds are used as controls for comparison with the multicloud simulations. We find that if the clouds are initially near each other, then hydrodynamical drafting helps the trailing cloud to catch the leading cloud and mix together. We present the measured acceleration due to drafting and find that lower-density clouds in lower-density environments experience more acceleration due to drafting than their denser cohorts. We find that the clustering of clouds also increases the condensation of ambient material and affects longevity. We analyze the velocity dispersion of the clouds using a single component method and a multicomponent decomposition method. We find that the presence of a second cloud increases the velocity dispersion behind the trailing cloud at some times. We find that the velocity dispersion due to gas motion in our simulations is significantly less than the actual dispersion observed by For et al., indicating that the thermal component must dominate in the MS.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 36
Spectroscopic Confirmation of a Protocluster at z = 3.37 with a High Fraction of Quiescent Galaxies
Ian McConachie; Gillian Wilson; Ben Forrest; Z. Cemile Marsan; Adam Muzzin; M. C. Cooper; Marianna Annunziatella; Danilo Marchesini; Jeffrey C. C. Chan; Percy Gomez; Mohamed H. Abdullah; Paolo Saracco; Julie Nantais
<jats:title>Abstract</jats:title> <jats:p>We report the discovery of MAGAZ3NE J095924+022537, a spectroscopically confirmed protocluster at <jats:inline-formula> <jats:tex-math> <?CDATA $z={3.3665}_{-0.0012}^{+0.0009}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.3665</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.0012</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.0009</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2b9fieqn1.gif" xlink:type="simple" /> </jats:inline-formula> around a spectroscopically confirmed <jats:italic>UVJ</jats:italic>-quiescent ultramassive galaxy (UMG; <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\star }\,={2.34}_{-0.34}^{+0.23}\times {10}^{11}\,{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⋆</mml:mo> </mml:mrow> </mml:msub> <mml:mspace width="0.25em" /> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.34</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.34</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.23</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>11</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2b9fieqn2.gif" xlink:type="simple" /> </jats:inline-formula>) in the COSMOS UltraVISTA field. We present a total of 38 protocluster members (14 spectroscopic and 24 photometric), including the UMG. Notably, and in marked contrast to protoclusters previously reported at this epoch that have been found to contain predominantly star-forming members, we measure an elevated fraction of quiescent galaxies relative to the coeval field (<jats:inline-formula> <jats:tex-math> <?CDATA ${73.3}_{-16.9}^{+26.7}{\rm{ \% }}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mn>73.3</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>16.9</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>26.7</mml:mn> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">%</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2b9fieqn3.gif" xlink:type="simple" /> </jats:inline-formula> versus <jats:inline-formula> <jats:tex-math> <?CDATA ${11.6}_{-4.9}^{+7.1}{\rm{ \% }}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mn>11.6</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4.9</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>7.1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">%</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2b9fieqn4.gif" xlink:type="simple" /> </jats:inline-formula> for galaxies with stellar mass <jats:italic>M</jats:italic> <jats:sub>⋆</jats:sub> ≥ 10<jats:sup>11</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>). This high quenched fraction provides a striking and important counterexample to the seeming ubiquitousness of star-forming galaxies in protoclusters at <jats:italic>z</jats:italic> > 2 and suggests, rather, that protoclusters exist in a diversity of evolutionary states in the early universe. We discuss the possibility that we might be observing either “early mass quenching” or nonclassical “environmental quenching.” We also present the discovery of MAGAZ3NE J100028+023349, a second spectroscopically confirmed protocluster, at a very similar redshift of <jats:inline-formula> <jats:tex-math> <?CDATA $z={3.3801}_{-0.0281}^{+0.0213}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.3801</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.0281</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.0213</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2b9fieqn5.gif" xlink:type="simple" /> </jats:inline-formula>. We present a total of 20 protocluster members, 12 of which are photometric and eight spectroscopic including a poststarburst UMG (<jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{\star }={2.95}_{-0.20}^{+0.21}\times {10}^{11}\,{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⋆</mml:mo> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.95</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.20</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.21</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>11</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2b9fieqn6.gif" xlink:type="simple" /> </jats:inline-formula>). Protoclusters MAGAZ3NE J0959 and MAGAZ3NE J1000 are separated by 18′ on the sky (35 comoving Mpc), in good agreement with predictions from simulations for the size of “Coma”-type cluster progenitors at this epoch. It is highly likely that the two UMGs are the progenitors of Brightest Cluster Galaxies seen in massive virialized clusters at lower redshift.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 37
New Results from the Spectral Observations of Solar Coronal Type II Radio Bursts
R. Ramesh; C. Kathiravan; S. Surya Natarajan
<jats:title>Abstract</jats:title> <jats:p>We carried out a statistical study of twenty-six type II radio bursts from the Sun observed with the Gauribidanur Low-frequency Solar Spectrograph in the frequency range 85–35 MHz during the period 2009–2019. Our results indicate that the average instantaneous bandwidth of the type II bursts in the above frequency range correlates with the angular width of the associated coronal mass ejections (CMEs). The correlation coefficient is ≈71%. This independently indicates that the coronal type II bursts reported in this work are mostly due to shocks driven by the CMEs. Moreover, it also suggests that the instantaneous bandwidth of the bursts could be due to electron acceleration (leading to type II bursts) occurring simultaneously at multiple locations of differing electron densities (i.e., plasma frequencies) along the shock surrounding the CME.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 38