Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal (ApJ)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 1995 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0004-637X

ISSN electrónico

1538-4357

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Investigation of the Timing and Spectral Properties of an Ultraluminous X-Ray Pulsar NGC 7793 P13

Lupin Chun-Che LinORCID; Chin-Ping HuORCID; Jumpei TakataORCID; Kwan-Lok LiORCID; C. Y. HuiORCID; A. K. H. KongORCID

<jats:title>Abstract</jats:title> <jats:p>We perform both timing and spectral analyses using the archival X-ray data taken with Swift, XMM-Newton, NICER, and NuSTAR from 2016 to 2020 to study an ultraluminous pulsar, NGC 7793 P13, that showed a long period of super-Eddington accretion. We use the Rayleigh test to investigate the pulsation at different epochs, and confirm the variation of the pulse profile with finite Gaussian mixture modeling and a two-sample Kuiper test. Taking into account the periodic variation of the spin periods caused by the orbital Doppler effect, we further determine an orbital period of ∼65 days and show that no significant correlation can be detected between the orbital phase and the pulsed fraction. The pulsed spectrum of NGC 7793 P13 in the 0.5–20 keV range can be simply described using a power law with a high-energy exponential cutoff, while the broadband phase-averaged spectrum of the same energy range requires two additional components to account for the contribution of a thermal accretion disk and the Comptonization photons scattered into the hard X-rays. We find that NGC 7793 P13 stayed in the hard ultraluminous state and the pulsed spectrum was relatively soft when the source was faint at the end of 2019. Moreover, an absorption feature close to 1.3 keV is marginally detected from the pulsed spectra and it is possibly associated with a cyclotron resonant scattering feature.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 65

An Efficient Method for Fitting Radiation-mediated Shocks to Gamma-Ray Burst Data: The Kompaneets RMS Approximation

Filip SamuelssonORCID; Christoffer LundmanORCID; Felix RydeORCID

<jats:title>Abstract</jats:title> <jats:p>Shocks that occur below a gamma-ray burst (GRB) jet photosphere are mediated by radiation. Such radiation-mediated shocks (RMSs) could be responsible for shaping the prompt GRB emission. Although well studied theoretically, RMS models have not yet been fitted to data owing to the computational cost of simulating RMSs from first principles. Here we bridge the gap between theory and observations by developing an approximate method capable of accurately reproducing radiation spectra from mildly relativistic (in the shock frame) or slower RMSs, called the Kompaneets RMS approximation (KRA). The approximation is based on the similarities between thermal Comptonization of radiation and the bulk Comptonization that occurs inside an RMS. We validate the method by comparing simulated KRA radiation spectra to first-principle radiation hydrodynamics simulations, finding excellent agreement both inside the RMS and in the RMS downstream. The KRA is then applied to a shock scenario inside a GRB jet, allowing for fast and efficient fitting to GRB data. We illustrate the capabilities of the developed method by performing a fit to a nonthermal spectrum in GRB 150314A. The fit allows us to uncover the physical properties of the RMS responsible for the prompt emission, such as the shock speed and the upstream plasma temperature.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 65

Photodynamical Modeling of the Fascinating Eclipses in the Triple-star System KOI-126

Mitchell E. YenawineORCID; William F. WelshORCID; Jerome A. OroszORCID; Allyson BierylaORCID; William D. CochranORCID; Michael EndlORCID; David W. LathamORCID; Samuel N. QuinnORCID; Donald R. ShortORCID; Gur WindmillerORCID

<jats:title>Abstract</jats:title> <jats:p>We explore the fascinating eclipses and dynamics of the compact hierarchical triple-star system KOI-126 (KIC 5897826). This system is composed of a pair of M-dwarf stars (KOI-126 B and C) in a 1.74 day orbit that revolve around an F star (KOI-126 A) every 34 days. Complex eclipse shapes are created as the M stars transit the F star, due to two effects: (1) the duration of the eclipse is a significant fraction of the M-star orbital period, so the prograde or retrograde motion of the M stars in their orbit lead to unusually short or long duration eclipses; (2) due to 3-body dynamics, the M-star orbit precesses with an astonishingly quick timescale of 1.74 yr for the periastron (apsidal) precession, and 2.73 yr for the inclination and nodal angle precession. Using the full Kepler data set, supplemented with ground-based photometry, plus 29 radial velocity measurements that span 6 yr, our photodynamical modeling yields masses of <jats:italic>M</jats:italic> <jats:sub> <jats:italic>A</jats:italic> </jats:sub> = 1.2713 ± 0.0047 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> (0.37%), <jats:italic>M</jats:italic> <jats:sub> <jats:italic>B</jats:italic> </jats:sub> = 0.23529 ± 0.00062 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> (0.26%), and <jats:italic>M</jats:italic> <jats:sub> <jats:italic>C</jats:italic> </jats:sub> = 0.20739 ± 0.00055 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> (0.27%) and radii of <jats:italic>R</jats:italic> <jats:sub> <jats:italic>A</jats:italic> </jats:sub> = 1.9984 ± 0.0027 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> (0.14%), <jats:italic>R</jats:italic> <jats:sub> <jats:italic>B</jats:italic> </jats:sub> = 0.25504 ± 0.00076 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> (0.3%), and <jats:italic>R</jats:italic> <jats:sub> <jats:italic>C</jats:italic> </jats:sub> = 0.23196 ± 0.00069 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub> (0.3%). We also estimate the apsidal motion constant of the M dwarfs, a parameter that characterizes the internal mass distribution. Although it is not particularly precise, we measure a mean apsidal motion constant, <jats:inline-formula> <jats:tex-math> <?CDATA $\overline{{k}_{2}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover accent="true"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mo stretchy="true">¯</mml:mo> </mml:mrow> </mml:mover> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac31b8ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, of <jats:inline-formula> <jats:tex-math> <?CDATA ${0.046}_{-0.028}^{+0.046}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>0.046</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.028</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.046</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac31b8ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, which is approximately 2<jats:italic>σ</jats:italic> lower than the theoretical model prediction of 0.150. We explore possible causes for this discrepancy.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 66

Simultaneous Constraints on the Star Formation History and Nucleosynthesis of Sculptor dSph

Mithi A. C. de los ReyesORCID; Evan N. KirbyORCID; Alexander P. JiORCID; Evan H. NuñezORCID

<jats:title>Abstract</jats:title> <jats:p>We demonstrate that using up to seven stellar abundance ratios can place observational constraints on the star formation histories (SFHs) of Local Group dSphs, using Sculptor dSph as a test case. We use a one-zone chemical evolution model to fit the overall abundance patterns of <jats:italic>α</jats:italic> elements (which probe the core-collapse supernovae that occur shortly after star formation), <jats:italic>s</jats:italic>-process elements (which probe AGB nucleosynthesis at intermediate delay times), and iron-peak elements (which probe delayed Type Ia supernovae). Our best-fit model indicates that Sculptor dSph has an ancient SFH, consistent with previous estimates from deep photometry. However, we derive a total star formation duration of ∼0.9 Gyr, which is shorter than photometrically derived SFHs. We explore the effect of various model assumptions on our measurement and find that modifications to these assumptions still produce relatively short SFHs of duration ≲1.4 Gyr. Our model is also able to compare sets of predicted nucleosynthetic yields for supernovae and AGB stars, and can provide insight into the nucleosynthesis of individual elements in Sculptor dSph. We find that observed [Mn/Fe] and [Ni/Fe] trends are most consistent with sub-<jats:italic>M</jats:italic> <jats:sub>Ch</jats:sub> Type Ia supernova models, and that a combination of “prompt” (delay times similar to core-collapse supernovae) and “delayed” (minimum delay times ≳50 Myr) <jats:italic>r</jats:italic>-process events may be required to reproduce observed [Ba/Mg] and [Eu/Mg] trends.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 66

Optical Studies of 10 Hard X-Ray-selected Cataclysmic Binaries

Jules P. HalpernORCID; John R. ThorstensenORCID

<jats:title>Abstract</jats:title> <jats:p>We conducted time-resolved optical spectroscopy and/or photometry of 10 cataclysmic binaries that were discovered in hard X-ray surveys, with the goal of measuring their orbital periods and searching for evidence that they are magnetic. Four of the objects in this study are new optical identifications: IGR J18017−3542, PBC J1841.1+0138, IGR J18434−0508, and Swift J1909.3+0124. A 311.8 s, coherent optical pulsation is detected from PBC J1841.1+0138, as well as eclipses with a period of 0.221909 days. A 152.49 s coherent period is detected from IGR J18434−0508. A probable period of 389 s is seen in IGR J18151−1052, in agreement with a known X-ray spin period. We also detect a period of 803.5 s in an archival X-ray observation of Swift J0717.8−2156. The last four objects are thus confirmed magnetic cataclysmic variables of the intermediate polar class. An optical period of 1554 s in AX J1832.3−0840 also confirms the known X-ray spin period, but a stronger signal at 2303 s is present whose interpretation is not obvious. We also studied the candidate intermediate polar Swift J0820.6−2805, which has low and high states differing by ≈4 mag and optical periods or quasi-periodic oscillations not in agreement with proposed X-ray periods. Of note is an unusually long 2.06-day orbital period for Swift J1909.3+0124, manifest in the radial velocity variation of photospheric absorption lines of an early K-type companion star. The star must be somewhat evolved if it is to fill its Roche lobe.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 67

The UV/Optical Peak and X-Ray Brightening in TDE Candidate AT 2019azh: A Case of Stream–Stream Collision and Delayed Accretion

Xiao-Long Liu; Li-Ming DouORCID; Jin-Hong ChenORCID; Rong-Feng ShenORCID

<jats:title>Abstract</jats:title> <jats:p>We present and analyze the optical/UV and X-ray observations of a nearby tidal disruption event (TDE) candidate, AT 2019azh, from ∼30 days before to ∼400 days after its early optical peak. The X-rays show a late brightening by a factor of ∼30–100 around 200 days after discovery, while the UV/opticals continuously decayed. The early X-rays show two flaring episodes of variation, temporally uncorrelated with the early UV/opticals. We found a clear sign of X-ray hardness evolution; i.e., the source is harder at early times and becomes softer as it brightens later. The drastically different temporal behaviors in X-rays and UV/opticals suggest that the two bands are physically distinct emission components and probably arise from different locations. These properties argue against the reprocessing of X-rays by any outflow as the origin of the UV/optical peak. The full data are best explained by a two-process scenario, in which the UV/optical peak is produced by the debris stream–stream collisions during the circularization phase; some shocked gas with low angular momentum forms an early, low-mass “precursor” accretion disk that emits the early X-rays. The major body of the disk is formed after the circularization finishes, whose enhanced accretion rate produces the late X-ray brightening. Event AT 2019azh is a strong case of a TDE whose emission signatures of stream–stream collision and delayed accretion are both identified.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 67

Let the Great World Spin: Revealing the Stormy, Turbulent Nature of Young Giant Exoplanet Analogs with the Spitzer Space Telescope

Johanna M. VosORCID; Jacqueline K. FahertyORCID; Jonathan GagnéORCID; Mark MarleyORCID; Stanimir MetchevORCID; John GizisORCID; Emily L. RiceORCID; Kelle CruzORCID

<jats:title>Abstract</jats:title> <jats:p>We present a survey for photometric variability in young, low-mass brown dwarfs with the Spitzer Space Telescope. The 23 objects in our sample show robust signatures of youth and share properties with directly imaged exoplanets. We present three new young objects: 2MASS J03492367+0635078, 2MASS J09512690−8023553, and 2MASS J07180871−6415310. We detect variability in 13 young objects, and find that young brown dwarfs are highly likely to display variability across the L2–T4 spectral type range. In contrast, the field dwarf variability occurrence rate drops for spectral types &gt;L9. We examine the variability amplitudes of young objects and find an enhancement in maximum amplitudes compared to field dwarfs. We speculate that the observed range of amplitudes within a spectral type may be influenced by secondary effects such as viewing inclination and/or rotation period. We combine our new rotation periods with the literature to investigate the effects of mass on angular momentum evolution. While high-mass brown dwarfs (&gt;30<jats:italic>M</jats:italic> <jats:sub>Jup</jats:sub>) spin up over time, the same trend is not apparent for lower-mass objects (&lt;30<jats:italic>M</jats:italic> <jats:sub>Jup</jats:sub>), likely due to the small number of measured periods for old, low-mass objects. The rotation periods of companion brown dwarfs and planetary-mass objects are consistent with those of isolated objects with similar ages and masses, suggesting similar angular momentum histories. Within the AB Doradus group, we find a high-variability occurrence rate and evidence for common angular momentum evolution. The results are encouraging for future variability searches in directly imaged exoplanets with facilities such as the James Webb Space Telescope and 30 m telescopes.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 68

Multiwavelength Analysis of A1240, the Double Radio-relic Merging Galaxy Cluster Embedded in an ∼80 Mpc-long Cosmic Filament

Hyejeon ChoORCID; M. James JeeORCID; Rory SmithORCID; Kyle FinnerORCID; Wonki LeeORCID

<jats:title>Abstract</jats:title> <jats:p>We present a multiwavelength study of the double radio-relic cluster A1240 at <jats:italic>z</jats:italic> = 0.195. Our Subaru-based weak-lensing analysis detects three mass clumps forming an ∼4 Mpc filamentary structure elongated in a north–south orientation. The northern (<jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{200}={2.61}_{-0.60}^{+0.51}\times {10}^{14}{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>200</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.61</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.60</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.51</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>14</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac36c8ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>) and middle (<jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{200}={1.09}_{-0.43}^{+0.34}\times {10}^{14}{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>200</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>1.09</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.43</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.34</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>14</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac36c8ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>) mass clumps separated by ∼1.3 Mpc are associated with A1240 and colocated with the X-ray peaks and cluster galaxy overdensities revealed by Chandra and MMT/Hectospec observations, respectively. The southern mass clump (<jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{200}={1.78}_{-0.55}^{+0.44}\times {10}^{14}{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>200</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>1.78</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.55</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.44</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>14</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac36c8ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>), ∼1.5 Mpc to the south of the middle clump, coincides with the galaxy overdensity in A1237, the A1240 companion cluster at <jats:italic>z</jats:italic> = 0.194. Considering the positions, orientations, and polarization fractions of the double radio relics measured by the LOFAR study, we suggest that A1240 is a postmerger binary system in the returning phase with a time since collision of ∼1.7 Gyr. With the SDSS DR16 data analysis, we also find that A1240 is embedded in the much larger scale (∼80 Mpc) filamentary structure whose orientation is in remarkable agreement with the hypothesized merger axis of A1240.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 68

Statistical Analyses of the Energies of X-Ray Plateaus and Flares in Gamma-Ray Bursts

Shuang-Xi YiORCID; Mei Du; Tong LiuORCID

<jats:title>Abstract</jats:title> <jats:p>Distinct X-ray plateau and flare phases have been observed in the afterglows of gamma-ray bursts (GRBs), and most of them should be related to central engine activities. In this paper, we collect 174 GRBs with X-ray plateau phases and 106 GRBs with X-ray flares. There are 51 GRBs that overlap in the two selected samples. We analyze the distributions of the proportions of the plateau energy <jats:italic>E</jats:italic> <jats:sub>plateau</jats:sub> and the flare energy <jats:inline-formula> <jats:tex-math> <?CDATA ${E}_{\mathrm{flare}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>flare</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac35e7ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> relative to the isotropic prompt emission energy <jats:italic>E</jats:italic> <jats:sub> <jats:italic>γ</jats:italic>,iso</jats:sub>. The results indicate that they well meet the Gaussian distributions and the medians of the logarithmic ratios are ∼−0.96 and −1.39 in the two cases. Moreover, strong positive correlations between <jats:italic>E</jats:italic> <jats:sub>plateau</jats:sub> (or <jats:inline-formula> <jats:tex-math> <?CDATA ${E}_{\mathrm{flare}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>flare</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac35e7ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>) and <jats:italic>E</jats:italic> <jats:sub> <jats:italic>γ</jats:italic>,iso</jats:sub> with slopes of ∼0.95 (or ∼0.80) are presented. For the overlapping sample, the slope is ∼0.80. We argue that most of X-ray plateaus and flares might have the same physical origin but appear with different features because of the different circumstances and radiation mechanisms. We also test the applicabilities of two models, i.e., black holes surrounded by fractured hyperaccretion disks and millisecond magnetars, on the origins of X-ray plateaus and flares.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 69

The Uncertain Future of Massive Binaries Obscures the Origin of LIGO/Virgo Sources

K. Belczynski; A. Romagnolo; A. OlejakORCID; J. Klencki; D. Chattopadhyay; S. StevensonORCID; M. Coleman MillerORCID; J.-P. LasotaORCID; Paul A. CrowtherORCID

<jats:title>Abstract</jats:title> <jats:p>The LIGO/Virgo gravitational-wave observatories have detected at least 50 double black hole (BH) coalescences. This sample is large enough to have allowed several recent studies to draw conclusions about the implied branching ratios between isolated binaries versus dense stellar clusters as the origin of double BHs. It has also led to the exciting suggestion that the population is highly likely to contain primordial BHs. Here we demonstrate that such conclusions cannot yet be robust because of the large current uncertainties in several key aspects of binary stellar evolution. These include the development and survival of a common envelope, the mass and angular-momentum loss during binary interactions, mixing in stellar interiors, pair-instability mass loss, and supernova outbursts. Using standard tools such as the rapid population synthesis codes <jats:monospace>StarTrack</jats:monospace> and <jats:monospace>COMPAS</jats:monospace> and the detailed stellar evolution code <jats:monospace>MESA</jats:monospace>, we examine as a case study the possible future evolution of Melnick 34, the most massive known binary star system (with initial component masses of 144 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> and 131 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>). We show that, despite its fairly well-known orbital architecture, various assumptions regarding stellar and binary physics predict a wide variety of outcomes: from a close BH–BH binary (which would lead to a potentially detectable coalescence), through a wide BH–BH binary (which might be seen in microlensing observations), or a Thorne–Żytkow object, to a complete disruption of both objects by a pair-instability supernova. Thus, because the future of massive binaries is inherently uncertain, sound predictions about the properties of BH–BH systems formed in the isolated binary evolution scenario are highly challenging at this time. Consequently, it is premature to draw conclusions about the formation channel branching ratios that involve isolated binary evolution for the LIGO/Virgo BH–BH merger population.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 69