Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal (ApJ)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 1995 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0004-637X

ISSN electrónico

1538-4357

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Erratum: “Pre-explosion Spiral Mass Loss of a Binary Star Merger” (2017, ApJ, 850, 59)

Ondřej PejchaORCID; Brian D. MetzgerORCID; Jacob G. Tyles; Kengo TomidaORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 273

Angular Momentum and Morphological Sequence of Massive Galaxies through Dark Sage

Antonio J. Porras-ValverdeORCID; Kelly Holley-BockelmannORCID; Andreas A. BerlindORCID; Adam R. H. Stevens

<jats:title>Abstract</jats:title> <jats:p>We study the present-day connection between galaxy morphology and angular momentum using the D<jats:sc>ark</jats:sc> S<jats:sc>age</jats:sc> semi-analytic model of galaxy formation. For a given stellar mass in the range 10<jats:sup>10</jats:sup>–10<jats:sup>12</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, the model predicts that galaxies with more prominent disks exhibit higher <jats:italic>stellar</jats:italic> disk specific angular momentum (<jats:italic>j</jats:italic> <jats:sub>stellar,disk</jats:sub>). However, when we include the gas in the disk, bulge-dominated galaxies have the highest <jats:italic>total</jats:italic> disk specific angular momentum (<jats:italic>j</jats:italic> <jats:sub>total,disk</jats:sub>). We attribute this to a large contribution from an extended disk of cold gas in typical bulge-dominated galaxies. Note that while the specific angular momenta (<jats:italic>j</jats:italic> = <jats:italic>J</jats:italic>/<jats:italic>M</jats:italic>) of these disks are large, their masses (<jats:italic>M</jats:italic>) are negligible. Thus, the contribution of these disks to the total angular momentum of the galaxy is small. We also find the relationship between the specific angular momentum of the dark matter (<jats:italic>j</jats:italic> <jats:sub>dark matter</jats:sub>) and morphology to be counterintuitive. Surprisingly, in this stellar mass range, not only do bulge-dominated galaxies tend to live in halos with higher <jats:italic>j</jats:italic> <jats:sub>dark matter</jats:sub> than disk-dominated galaxies, but intermediate galaxies (those with roughly equal fractions of bulge and disk mass) have the lowest <jats:italic>j</jats:italic> <jats:sub>dark matter</jats:sub> of all. Yet, when controlling for halo mass, rather than stellar mass, the relationship between <jats:italic>j</jats:italic> <jats:sub>dark matter</jats:sub> and morphology vanishes. Based on these results, we find that halo mass—rather than angular momentum—is the main driver of the predicted morphology sequence in this high mass range. In fact, in our stellar mass range, disk-dominated galaxies live in dark matter halos that are roughly one-fifth the mass of their bulge-dominated counterparts.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 273

Erratum: “Galaxy Lookback Evolution Models: A Comparison with Magneticum Cosmological Simulations and Observations” (2021, ApJ, 910 , 87)

Rolf-Peter Kudritzki; Adelheid F. Teklu; Felix Schulze; Rhea-Silvia Remus; Klaus Dolag; Andreas Burkert; H. Jabran Zahid

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 274

Cosmographic Parameters in Model-independent Approaches

Ahmad MehrabiORCID; Mehdi RezaeiORCID

<jats:title>Abstract</jats:title> <jats:p>The cosmographic approach, a Taylor expansion of the Hubble function, has been used as a model-independent method to investigate the evolution of the universe in the presence of cosmological data. Apart from possible technical problems like the radius of convergence, there is an ongoing debate about the tensions that appear when one investigates some high-redshift cosmological data. In this work, we consider two common data sets, namely, Type Ia supernovae (Pantheon sample) and the Hubble data, to investigate advantages and disadvantages of the cosmographic approach. To do this, we obtain the evolution of cosmographic functions using the cosmographic method, as well as two other well-known model-independent approaches, namely, the Gaussian process and the genetic algorithm. We also assume a ΛCDM model as the concordance model to compare the results of mentioned approaches. Our results indicate that the results of cosmography compared with the other approaches are not exact enough. Considering the Hubble data, which are less certain, the results of <jats:italic>q</jats:italic> <jats:sub>0</jats:sub> and <jats:italic>j</jats:italic> <jats:sub>0</jats:sub> obtained in cosmography provide a tension at more than 3<jats:italic>σ</jats:italic> away from the best result of ΛCDM. Assuming both of the data samples in different approaches, we show that the cosmographic approach, because it provides some biased results, is not the best approach for reconstruction of cosmographic functions, especially at higher redshifts.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 274

Erratum: “The 3.3 μm Infrared Emission Feature: Observational and Laboratory Constraints on Its Carrier” (2021, ApJ, 916, 52)

Alan T. TokunagaORCID; Lawrence S. BernsteinORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 275

Physical Properties of Massive Compact Starburst Galaxies with Extreme Outflows

Serena PerrottaORCID; Erin R. George; Alison L. CoilORCID; Christy A. Tremonti; David S. N. RupkeORCID; Julie D. DavisORCID; Aleksandar M. Diamond-Stanic; James E. Geach; Ryan C. HickoxORCID; John MoustakasORCID; Grayson C. PetterORCID; Gregory H. RudnickORCID; Paul H. SellORCID; Cameren N. SwiggumORCID; Kelly E. WhalenORCID

<jats:title>Abstract</jats:title> <jats:p>We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (<jats:italic>M</jats:italic> <jats:sub>*</jats:sub> ∼ 10<jats:sup>11</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>), compact starburst galaxies at <jats:italic>z</jats:italic> = 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean Σ<jats:sub>SFR</jats:sub> ∼ 2000 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> kpc<jats:sup>−2</jats:sup>) and powerful galactic outflows (maximum speeds <jats:italic>v</jats:italic> <jats:sub>98</jats:sub> ∼ 1000–3000 km s<jats:sup>−1</jats:sup>). Our unique data set includes an ensemble of both emission ([O <jats:sc>ii]</jats:sc> <jats:italic>λλ</jats:italic>3726,3729, H<jats:italic>β</jats:italic>, [O <jats:sc>iii]</jats:sc> <jats:italic>λλ</jats:italic>4959,5007, H<jats:italic>α</jats:italic>, [N <jats:sc>ii]</jats:sc> <jats:italic>λλ</jats:italic>6549,6585, and [S <jats:sc>ii]</jats:sc> <jats:italic>λλ</jats:italic>6716,6731) and absorption (Mg <jats:sc>ii</jats:sc> <jats:italic>λλ</jats:italic>2796,2803, and Fe <jats:sc>ii</jats:sc> <jats:italic>λ</jats:italic>2586) lines that allow us to investigate the kinematics of the cool gas phase (<jats:italic>T</jats:italic> ∼ 10<jats:sup>4</jats:sup> K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median <jats:italic>n</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> ∼ 530 cm<jats:sup>−3</jats:sup>), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [S <jats:sc>ii]</jats:sc> nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 275

Thomson Scattering in the Lower Corona in the Presence of Sunspots

Pascal Saint-HilaireORCID; Juan Carlos Martínez Oliveros; Hugh S. HudsonORCID

<jats:title>Abstract</jats:title> <jats:p>Polarized scattered light from low (few tens of megameter altitudes) coronal transients has been recently reported in Solar Dynamics Observatory/Helioseismic and Magnetic Image (HMI) observations. In a classic paper, Minnaert (1930) provided an analytic theory of polarization via electron scattering in the corona. His work assumed axisymmetric input from the photosphere with a single-parameter limb-darkening function. This diagnostic has recently been used to estimate the free-electron number and mass of HMI transients near the solar limb, but it applies equally well to any coronal material, at any height. Here we extend his work numerically to incorporate sunspots, which can strongly effect the polarization properties of the scattered light in the low corona. Sunspot effects are explored first for axisymmetric model cases, and then applied to the full description of two sunspot groups as observed by HMI. We find that (1) as previously reported by Minnaert, limb darkening has a strong influence, usually increasing the level of linear polarization tangential to the limb; (2) unsurprisingly, the effects of the sunspot generally increase at the lower scatterer altitudes, and increase the larger the sunspot is and the closer to their center the scatterer subpoint is; (3) assuming the Stokes <jats:italic>Q</jats:italic> &gt; 0 basis to be tangential to the limb, sunspots typically decrease the Stokes Q/I polarization and the perceived electron densities below the spotless case, sometimes dramatically; and (4) typically, a sizeable non-zero Stokes U/I polarization component will appear when a sunspot’s influence becomes non-negligible. However, that is not true in rare cases of extreme symmetry (e.g., scattering mass at the center of an axisymmetric sunspot). The tools developed here are generally applicable to an arbitrary image input.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 276

Evolution of Accretor Stars in Massive Binaries: Broader Implications from Modeling ζ Ophiuchi

M. RenzoORCID; Y. GötbergORCID

<jats:title>Abstract</jats:title> <jats:p>Most massive stars are born in binaries close enough for mass transfer episodes. These modify the appearance, structure, and future evolution of both stars. We compute the evolution of a 100-day-period binary, consisting initially of a 25 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> star and a 17 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> star, which experiences stable mass transfer. We focus on the impact of mass accretion on the surface composition, internal rotation, and structure of the accretor. To anchor our models, we show that our accretor broadly reproduces the properties of <jats:italic>ζ</jats:italic> Ophiuchi, which has long been proposed to have accreted mass before being ejected as a runaway star when the companion exploded. We compare our accretor to models of single rotating stars and find that the later and stronger spin-up provided by mass accretion produces significant differences. Specifically, the core of the accretor retains higher spin at the end of the main sequence, and a convective layer develops that changes its density profile. Moreover, the surface of the accretor star is polluted by CNO-processed material donated by the companion. Our models show effects of mass accretion in binaries that are not captured in single rotating stellar models. This possibly impacts the further evolution (either in a binary or as single stars), the final collapse, and the resulting spin of the compact object.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 277

Massive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS. II. An ACS/WFC3 Survey of Nearby LIRGs

S. T. LindenORCID; A. S. Evans; K. LarsonORCID; G. C. PrivonORCID; L. ArmusORCID; J. RichORCID; T. Díaz-SantosORCID; E. J. MurphyORCID; Y. SongORCID; L. Barcos-MuñozORCID; J. HowellORCID; V. CharmandarisORCID; H. InamiORCID; V. UORCID; J. A. SuraceORCID; J. M. MazzarellaORCID; D. CalzettiORCID

<jats:title>Abstract</jats:title> <jats:p>We present the results of a Hubble Space Telescope WFC3 near-UV and Advanced Camera for Surveys Wide Field Channel optical study into the star cluster populations of a sample of 10 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages, masses, and extinctions for a total of 1027 star clusters in galaxies with <jats:italic>d</jats:italic> <jats:sub> <jats:italic>L</jats:italic> </jats:sub> &lt; 110 Mpc in order to avoid issues related to cluster bending. The measured cluster age distribution slope of <jats:inline-formula> <jats:tex-math> <?CDATA ${dN}/d\tau \propto {\tau }^{-0.5+/-0.12}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="italic">dN</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>τ</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.5</mml:mn> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.12</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2892ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> is steeper than what has been observed in lower-luminosity star-forming galaxies. Further, differences in the slope of the observed cluster age distribution between inner- (<jats:inline-formula> <jats:tex-math> <?CDATA ${dN}/d\tau \propto {\tau }^{-1.07+/-0.12}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="italic">dN</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>τ</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.07</mml:mn> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.12</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2892ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>) and outer-disk (<jats:inline-formula> <jats:tex-math> <?CDATA ${dN}/d\tau \propto {\tau }^{-0.37+/-0.09}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="italic">dN</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>τ</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>τ</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.37</mml:mn> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2892ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>) star clusters provide evidence of mass-dependent cluster destruction in the central regions of LIRGs driven primarily by the combined effect of strong tidal shocks and encounters with massive giant molecular clouds. Excluding the nuclear ring surrounding the Seyfert 1 nucleus in NGC 7469, the derived cluster mass function (CMF; <jats:inline-formula> <jats:tex-math> <?CDATA ${dN}/{dM}\propto {M}^{\alpha }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="italic">dN</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="italic">dM</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2892ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>) offers marginal evidence for a truncation in the power law at <jats:italic>M</jats:italic> <jats:sub> <jats:italic>t</jats:italic> </jats:sub> ∼ 2×10<jats:sup>6</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> for our three most <jats:italic>cluster-rich</jats:italic> sources, which are all classified as early stage mergers. Finally, we find evidence of a flattening of the CMF slope of <jats:inline-formula> <jats:tex-math> <?CDATA ${dN}/{dM}\propto {M}^{-1.42\pm 0.1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="italic">dN</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="italic">dM</mml:mi> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.42</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2892ieqn5.gif" xlink:type="simple" /> </jats:inline-formula> for clusters in late-stage mergers relative to early stage (<jats:italic>α</jats:italic> = −1.65 ± 0.02), which we attribute to an increase in the formation of massive clusters over the course of the interaction.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 278

Erratum: “A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo” (2021, ApJ, 909, 218)

B. P. Abbott; R. Abbott; T. D. Abbott; S. Abraham; F. Acernese; K. Ackley; C. Adams; R. X. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; L. Aiello; A. Ain; P. Ajith; G. Allen; A. Allocca; M. A. Aloy; P. A. Altin; A. Amato; S. Anand; A. Ananyeva; S. B. Anderson; W. G. Anderson; S. V. Angelova; S. Antier; S. Appert; K. Arai; M. C. Araya; J. S. Areeda; M. Arène; N. Arnaud; S. M. Aronson; K. G. Arun; S. Ascenzi; G. Ashton; S. M. Aston; P. Astone; F. Aubin; P. Aufmuth; K. AultONeal; C. Austin; V. Avendano; A. Avila-Alvarez; S. Babak; P. Bacon; F. Badaracco; M. K. M. Bader; S. Bae; J. Baird; P. T. Baker; F. Baldaccini; G. Ballardin; S. W. Ballmer; A. Bals; S. Banagiri; J. C. Barayoga; C. Barbieri; S. E. Barclay; B. C. Barish; D. Barker; K. Barkett; S. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; D. Barta; J. Bartlett; I. Bartos; R. Bassiri; A. Basti; M. Bawaj; J. C. Bayley; M. Bazzan; B. Bécsy; M. Bejger; I. Belahcene; A. S. Bell; D. Beniwal; M. G. Benjamin; B. K. Berger; G. Bergmann; S. Bernuzzi; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; R. Bhandare; J. Bidler; E. Biggs; I. A. Bilenko; S. A. Bilgili; G. Billingsley; R. Birney; O. Birnholtz; S. Biscans; M. Bischi; S. Biscoveanu; A. Bisht; M. Bitossi; M. A. Bizouard; J. K. Blackburn; J. Blackman; C. D. Blair; D. G. Blair; R. M. Blair; S. Bloemen; F. Bobba; N. Bode; M. Boer; Y. Boetzel; G. Bogaert; F. Bondu; R. Bonnand; P. Booker; B. A. Boom; R. Bork; V. Boschi; S. Bose; V. Bossilkov; J. Bosveld; Y. Bouffanais; A. Bozzi; C. Bradaschia; P. R. Brady; A. Bramley; M. Branchesi; J. E. Brau; M. Breschi; T. Briant; J. H. Briggs; F. Brighenti; A. Brillet; M. Brinkmann; P. Brockill; A. F. Brooks; J. Brooks; D. D. Brown; S. Brunett; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; M. Cabero; L. Cadonati; G. Cagnoli; C. Cahillane; J. Calderón Bustillo; T. A. Callister; E. Calloni; J. B. Camp; W. A. Campbell; M. Canepa; K. C. Cannon; H. Cao; J. Cao; G. Carapella; F. Carbognani; S. Caride; M. F. Carney; G. Carullo; J. Casanueva Diaz; C. Casentini; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; P. Cerdá-Durán; E. Cesarini; O. Chaibi; K. Chakravarti; S. J. Chamberlin; M. Chan; S. Chao; P. Charlton; E. A. Chase; E. Chassande-Mottin; D. Chatterjee; M. Chaturvedi; B. D. Cheeseboro; H. Y. Chen; X. Chen; Y. Chen; H.-P. Cheng; C. K. Cheong; H. Y. Chia; F. Chiadini; A. Chincarini; A. Chiummo; G. Cho; H. S. Cho; M. Cho; N. Christensen; Q. Chu; S. Chua; K. W. Chung; S. Chung; G. Ciani; M. Cieślar; A. A. Ciobanu; R. Ciolfi; F. Cipriano; A. Cirone; F. Clara; J. A. Clark; P. Clearwater; F. Cleva; E. Coccia; P.-F. Cohadon; D. Cohen; M. Colleoni; C. G. Collette; C. Collins; M. Colpi; L. R. Cominsky; M. Constancio; L. Conti; S. J. Cooper; P. Corban; T. R. Corbitt; I. Cordero-Carrión; S. Corezzi; K. R. Corley; N. Cornish; D. Corre; A. Corsi; S. Cortese; C. A. Costa; R. Cotesta; M. W. Coughlin; S. B. Coughlin; J.-P. Coulon; S. T. Countryman; P. Couvares; P. B. Covas; E. E. Cowan; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; J. D. E. Creighton; T. D. Creighton; J. Cripe; M. Croquette; S. G. Crowder; T. J. Cullen; A. Cumming; L. Cunningham; E. Cuoco; T. Dal Canton; G. Dálya; B. D’Angelo; S. L. Danilishin; S. D’Antonio; K. Danzmann; A. Dasgupta; C. F. Da Silva Costa; L. E. H. Datrier; V. Dattilo; I. Dave; M. Davier; D. Davis; E. J. Daw; D. DeBra; M. Deenadayalan; J. Degallaix; M. De Laurentis; S. Deléglise; W. Del Pozzo; L. M. DeMarchi; N. Demos; T. Dent; R. De Pietri; R. De Rosa; C. De Rossi; R. DeSalvo; O. de Varona; S. Dhurandhar; M. C. Díaz; T. Dietrich; L. Di Fiore; C. DiFronzo; C. Di Giorgio; F. Di Giovanni; M. Di Giovanni; T. Di Girolamo; A. Di Lieto; B. Ding; S. Di Pace; I. Di Palma; F. Di Renzo; A. K. Divakarla; A. Dmitriev; Z. Doctor; F. Donovan; K. L. Dooley; S. Doravari; I. Dorrington; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; J.-G. Ducoin; P. Dupej; O. Durante; S. E. Dwyer; P. J. Easter; G. Eddolls; T. B. Edo; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; M. Eisenmann; R. A. Eisenstein; L. Errico; R. C. Essick; H. Estelles; D. Estevez; Z. B. Etienne; T. Etzel; M. Evans; T. M. Evans; V. Fafone; S. Fairhurst; X. Fan; S. Farinon; B. Farr; W. M. Farr; E. J. Fauchon-Jones; M. Favata; M. Fays; M. Fazio; C. Fee; J. Feicht; M. M. Fejer; F. Feng; A. Fernandez-Galiana; I. Ferrante; E. C. Ferreira; T. A. Ferreira; F. Fidecaro; I. Fiori; D. Fiorucci; M. Fishbach; R. P. Fisher; J. M. Fishner; R. Fittipaldi; M. Fitz-Axen; V. Fiumara; R. Flaminio; M. Fletcher; E. Floden; E. Flynn; H. Fong; J. A. Font; P. W. F. Forsyth; J.-D. Fournier; Francisco Hernandez Vivanco; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; V. Frey; P. Fritschel; V. V. Frolov; G. Fronzè; P. Fulda; M. Fyffe; H. A. Gabbard; B. U. Gadre; S. M. Gaebel; J. R. Gair; L. Gammaitoni; S. G. Gaonkar; C. García-Quirós; F. Garufi; B. Gateley; S. Gaudio; G. Gaur; V. Gayathri; G. Gemme; E. Genin; A. Gennai; D. George; J. George; L. Gergely; S. Ghonge; Abhirup Ghosh; Archisman Ghosh; S. Ghosh; B. Giacomazzo; J. A. Giaime; K. D. Giardina; D. R. Gibson; K. Gill; L. Glover; J. Gniesmer; P. Godwin; E. Goetz; R. Goetz; B. Goncharov; G. González; J. M. Gonzalez Castro; A. Gopakumar; S. E. Gossan; M. Gosselin; R. Gouaty; B. Grace; A. Grado; M. Granata; A. Grant; S. Gras; P. Grassia; C. Gray; R. Gray; G. Greco; A. C. Green; R. Green; E. M. Gretarsson; A. Grimaldi; S. J. Grimm; P. Groot; H. Grote; S. Grunewald; P. Gruning; G. M. Guidi; H. K. Gulati; Y. Guo; A. Gupta; Anchal Gupta; P. Gupta; E. K. Gustafson; R. Gustafson; L. Haegel; O. Halim; B. R. Hall; E. D. Hall; E. Z. Hamilton; G. Hammond; M. Haney; M. M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; O. A. Hannuksela; T. J. Hansen; J. Hanson; T. Harder; T. Hardwick; K. Haris; J. Harms; G. M. Harry; I. W. Harry; R. K. Hasskew; C. J. Haster; K. Haughian; F. J. Hayes; J. Healy; A. Heidmann; M. C. Heintze; H. Heitmann; F. Hellman; P. Hello; G. Hemming; M. Hendry; I. S. Heng; J. Hennig; M. Heurs; S. Hild; T. Hinderer; S. Hochheim; D. Hofman; A. M. Holgado; N. A. Holland; K. Holt; D. E. Holz; P. Hopkins; C. Horst; J. Hough; E. J. Howell; C. G. Hoy; Y. Huang; M. T. Hübner; E. A. Huerta; D. Huet; B. Hughey; V. Hui; S. Husa; S. H. Huttner; T. Huynh-Dinh; B. Idzkowski; A. Iess; H. Inchauspe; C. Ingram; R. Inta; G. Intini; B. Irwin; H. N. Isa; J.-M. Isac; M. Isi; B. R. Iyer; T. Jacqmin; S. J. Jadhav; K. Jani; N. N. Janthalur; P. Jaranowski; D. Jariwala; A. C. Jenkins; J. Jiang; D. S. Johnson; A. W. Jones; D. I. Jones; J. D. Jones; R. Jones; R. J. G. Jonker; L. Ju; J. Junker; C. V. Kalaghatgi; V. Kalogera; B. Kamai; S. Kandhasamy; G. Kang; J. B. Kanner; S. J. Kapadia; C. Karathanasis; S. Karki; R. Kashyap; M. Kasprzack; S. Katsanevas; E. Katsavounidis; W. Katzman; S. Kaufer; K. Kawabe; N. V. Keerthana; F. Kéfélian; D. Keitel; R. Kennedy; J. S. Key; F. Y. Khalili; I. Khan; S. Khan; E. A. Khazanov; N. Khetan; M. Khursheed; N. Kijbunchoo; Chunglee Kim; J. C. Kim; K. Kim; W. Kim; W. S. Kim; Y.-M. Kim; C. Kimball; P. J. King; M. Kinley-Hanlon; R. Kirchhoff; J. S. Kissel; L. Kleybolte; J. H. Klika; S. Klimenko; T. D. Knowles; P. Koch; S. M. Koehlenbeck; G. Koekoek; S. Koley; V. Kondrashov; A. Kontos; N. Koper; M. Korobko; W. Z. Korth; M. Kovalam; D. B. Kozak; C. Krämer; V. Kringel; N. Krishnendu; A. Królak; N. Krupinski; G. Kuehn; A. Kumar; P. Kumar; Rahul Kumar; Rakesh Kumar; L. Kuo; A. Kutynia; S. Kwang; B. D. Lackey; D. Laghi; K. H. Lai; T. L. Lam; M. Landry; B. B. Lane; R. N. Lang; J. Lange; B. Lantz; R. K. Lanza; A. Lartaux-Vollard; P. D. Lasky; M. Laxen; A. Lazzarini; C. Lazzaro; P. Leaci; S. Leavey; Y. K. Lecoeuche; C. H. Lee; H. K. Lee; H. M. Lee; H. W. Lee; J. Lee; K. Lee; J. Lehmann; A. K. Lenon; N. Leroy; N. Letendre; Y. Levin; A. Li; J. Li; K. J. L. Li; T. G. F. Li; X. Li; F. Lin; F. Linde; S. D. Linker; T. B. Littenberg; J. Liu; X. Liu; M. Llorens-Monteagudo; R. K. L. Lo; L. T. London; A. Longo; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; J. D. Lough; C. O. Lousto; G. Lovelace; M. E. Lower; H. Lück; D. Lumaca; A. P. Lundgren; R. Lynch; Y. Ma; R. Macas; S. Macfoy; M. MacInnis; D. M. Macleod; A. Macquet; I. Magaña Hernandez; F. Magaña-Sandoval; R. M. Magee; E. Majorana; I. Maksimovic; A. Malik; N. Man; V. Mandic; V. Mangano; G. L. Mansell; M. Manske; M. Mantovani; M. Mapelli; F. Marchesoni; F. Marion; S. Márka; Z. Márka; C. Markakis; A. S. Markosyan; A. Markowitz; E. Maros; A. Marquina; S. Marsat; F. Martelli; I. W. Martin; R. M. Martin; V. Martinez; D. V. Martynov; H. Masalehdan; K. Mason; E. Massera; A. Masserot; T. J. Massinger; M. Masso-Reid; S. Mastrogiovanni; A. Matas; F. Matichard; L. Matone; N. Mavalvala; J. J. McCann; R. McCarthy; D. E. McClelland; S. McCormick; L. McCuller; S. C. McGuire; C. McIsaac; J. McIver; D. J. McManus; T. McRae; S. T. McWilliams; D. Meacher; G. D. Meadors; M. Mehmet; A. K. Mehta; J. Meidam; E. Mejuto Villa; A. Melatos; G. Mendell; R. A. Mercer; L. Mereni; K. Merfeld; E. L. Merilh; M. Merzougui; S. Meshkov; C. Messenger; C. Messick; F. Messina; R. Metzdorff; P. M. Meyers; F. Meylahn; A. Miani; H. Miao; C. Michel; H. Middleton; L. Milano; A. L. Miller; M. Millhouse; J. C. Mills; M. C. Milovich-Goff; O. Minazzoli; Y. Minenkov; A. Mishkin; C. Mishra; T. Mistry; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; G. Mo; D. Moffa; K. Mogushi; S. R. P. Mohapatra; M. Molina-Ruiz; M. Mondin; M. Montani; C. J. Moore; D. Moraru; F. Morawski; G. Moreno; S. Morisaki; B. Mours; C. M. Mow-Lowry; F. Muciaccia; Arunava Mukherjee; D. Mukherjee; S. Mukherjee; Subroto Mukherjee; N. Mukund; A. Mullavey; J. Munch; E. A. Muñiz; M. Muratore; P. G. Murray; A. Nagar; I. Nardecchia; L. Naticchioni; R. K. Nayak; B. F. Neil; J. Neilson; G. Nelemans; T. J. N. Nelson; M. Nery; A. Neunzert; L. Nevin; K. Y. Ng; S. Ng; C. Nguyen; P. Nguyen; D. Nichols; S. A. Nichols; S. Nissanke; F. Nocera; C. North; L. K. Nuttall; M. Obergaulinger; J. Oberling; B. D. O’Brien; G. Oganesyan; G. H. Ogin; J. J. Oh; S. H. Oh; F. Ohme; H. Ohta; M. A. Okada; M. Oliver; P. Oppermann; Richard J. Oram; B. O’Reilly; R. G. Ormiston; L. F. Ortega; R. O’Shaughnessy; S. Ossokine; D. J. Ottaway; H. Overmier; B. J. Owen; A. E. Pace; G. Pagano; M. A. Page; G. Pagliaroli; A. Pai; S. A. Pai; J. R. Palamos; O. Palashov; C. Palomba; H. Pan; P. K. Panda; P. T. H. Pang; C. Pankow; F. Pannarale; B. C. Pant; F. Paoletti; A. Paoli; A. Parida; W. Parker; D. Pascucci; A. Pasqualetti; R. Passaquieti; D. Passuello; M. Patil; B. Patricelli; E. Payne; B. L. Pearlstone; T. C. Pechsiri; A. J. Pedersen; M. Pedraza; R. Pedurand; A. Pele; S. Penn; A. Perego; C. J. Perez; C. Périgois; A. Perreca; J. Petermann; H. P. Pfeiffer; M. Phelps; K. S. Phukon; O. J. Piccinni; M. Pichot; F. Piergiovanni; V. Pierro; G. Pillant; L. Pinard; I. M. Pinto; M. Pirello; M. Pitkin; W. Plastino; R. Poggiani; D. Y. T. Pong; S. Ponrathnam; P. Popolizio; E. K. Porter; J. Powell; A. K. Prajapati; J. Prasad; K. Prasai; R. Prasanna; G. Pratten; T. Prestegard; M. Principe; G. A. Prodi; L. Prokhorov; M. Punturo; P. Puppo; M. Pürrer; H. Qi; V. Quetschke; P. J. Quinonez; F. J. Raab; G. Raaijmakers; H. Radkins; N. Radulesco; P. Raffai; S. Raja; C. Rajan; B. Rajbhandari; M. Rakhmanov; K. E. Ramirez; A. Ramos-Buades; Javed Rana; K. Rao; P. Rapagnani; V. Raymond; M. Razzano; J. Read; T. Regimbau; L. Rei; S. Reid; D. H. Reitze; P. Rettegno; F. Ricci; C. J. Richardson; J. W. Richardson; P. M. Ricker; G. Riemenschneider; K. Riles; M. Rizzo; N. A. Robertson; F. Robinet; A. Rocchi; L. Rolland; J. G. Rollins; V. J. Roma; M. Romanelli; J. Romano; R. Romano; C. L. Romel; J. H. Romie; C. A. Rose; D. Rose; K. Rose; D. Rosińska; S. G. Rosofsky; M. P. Ross; S. Rowan; A. Rüdiger; P. Ruggi; G. Rutins; K. Ryan; S. Sachdev; T. Sadecki; M. Sakellariadou; O. S. Salafia; L. Salconi; M. Saleem; A. Samajdar; L. Sammut; E. J. Sanchez; L. E. Sanchez; N. Sanchis-Gual; J. R. Sanders; K. A. Santiago; E. Santos; N. Sarin; B. Sassolas; B. S. Sathyaprakash; O. Sauter; R. L. Savage; P. Schale; M. Scheel; J. Scheuer; P. Schmidt; R. Schnabel; R. M. S. Schofield; A. Schönbeck; E. Schreiber; B. W. Schulte; B. F. Schutz; J. Scott; S. M. Scott; E. Seidel; D. Sellers; A. S. Sengupta; N. Sennett; D. Sentenac; V. Sequino; A. Sergeev; Y. Setyawati; D. A. Shaddock; T. Shaffer; M. S. Shahriar; M. B. Shaner; A. Sharma; P. Sharma; P. Shawhan; H. Shen; R. Shink; D. H. Shoemaker; D. M. Shoemaker; K. Shukla; S. ShyamSundar; K. Siellez; M. Sieniawska; D. Sigg; L. P. Singer; D. Singh; N. Singh; A. Singhal; A. M. Sintes; S. Sitmukhambetov; V. Skliris; B. J. J. Slagmolen; T. J. Slaven-Blair; J. R. Smith; R. J. E. Smith; S. Somala; E. J. Son; S. Soni; B. Sorazu; F. Sorrentino; T. Souradeep; E. Sowell; A. P. Spencer; M. Spera; A. K. Srivastava; V. Srivastava; K. Staats; C. Stachie; M. Standke; D. A. Steer; M. Steinke; J. Steinlechner; S. Steinlechner; D. Steinmeyer; S. P. Stevenson; D. Stocks; R. Stone; D. J. Stops; K. A. Strain; G. Stratta; S. E. Strigin; A. Strunk; R. Sturani; A. L. Stuver; V. Sudhir; T. Z. Summerscales; L. Sun; S. Sunil; A. Sur; J. Suresh; P. J. Sutton; B. L. Swinkels; M. J. Szczepańczyk; M. Tacca; S. C. Tait; C. Talbot; D. B. Tanner; D. Tao; M. Tápai; A. Tapia; J. D. Tasson; R. Taylor; R. Tenorio; L. Terkowski; M. Thomas; P. Thomas; S. R. Thondapu; K. A. Thorne; E. Thrane; Shubhanshu Tiwari; Srishti Tiwari; V. Tiwari; K. Toland; M. Tonelli; Z. Tornasi; A. Torres-Forné; C. I. Torrie; D. Töyrä; F. Travasso; G. Traylor; M. C. Tringali; A. Tripathee; A. Trovato; L. Trozzo; K. W. Tsang; M. Tse; R. Tso; L. Tsukada; D. Tsuna; T. Tsutsui; D. Tuyenbayev; K. Ueno; D. Ugolini; C. S. Unnikrishnan; A. L. Urban; S. A. Usman; H. Vahlbruch; G. Vajente; G. Valdes; M. Valentini; N. van Bakel; M. van Beuzekom; J. F. J. van den Brand; C. Van Den Broeck; D. C. Vander-Hyde; L. van der Schaaf; J. V. VanHeijningen; A. A. van Veggel; M. Vardaro; V. Varma; S. Vass; M. Vasúth; A. Vecchio; G. Vedovato; J. Veitch; P. J. Veitch; K. Venkateswara; G. Venugopalan; D. Verkindt; F. Vetrano; A. Viceré; A. D. Viets; S. Vinciguerra; D. J. Vine; J.-Y. Vinet; S. Vitale; T. Vo; H. Vocca; C. Vorvick; S. P. Vyatchanin; A. R. Wade; L. E. Wade; M. Wade; R. Walet; M. Walker; L. Wallace; S. Walsh; H. Wang; J. Z. Wang; S. Wang; W. H. Wang; Y. F. Wang; R. L. Ward; Z. A. Warden; J. Warner; M. Was; J. Watchi; B. Weaver; L.-W. Wei; M. Weinert; A. J. Weinstein; R. Weiss; F. Wellmann; L. Wen; E. K. Wessel; P. Weßels; J. W. Westhouse; K. Wette; J. T. Whelan; B. F. Whiting; C. Whittle; D. M. Wilken; D. Williams; A. R. Williamson; J. L. Willis; B. Willke; W. Winkler; C. C. Wipf; H. Wittel; G. Woan; J. Woehler; J. K. Wofford; J. L. Wright; D. S. Wu; D. M. Wysocki; S. Xiao; R. Xu; H. Yamamoto; C. C. Yancey; L. Yang; Y. Yang; Z. Yang; M. J. Yap; M. Yazback; D. W. Yeeles; Hang Yu; Haocun Yu; S. H. R. Yuen; A. K. Zadrożny; A. Zadrożny; M. Zanolin; T. Zelenova; J.-P. Zendri; M. Zevin; J. Zhang; L. Zhang; T. Zhang; C. Zhao; G. Zhao; M. Zhou; Z. Zhou; X. J. Zhu; A. B. Zimmerman; M. E. Zucker; J. Zweizig

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 279