Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
sígame v3: Gas Fragmentation in Postprocessing of Cosmological Simulations for More Accurate Infrared Line Emission Modeling
Karen Pardos Olsen; Blakesley Burkhart; Mordecai-Mark Mac Low; Robin G. Treß; Thomas R. Greve; David Vizgan; Jay Motka; Josh Borrow; Gergö Popping; Romeel Davé; Rowan J. Smith; Desika Narayanan
<jats:title>Abstract</jats:title> <jats:p>We present an update to the framework called Simulator of Galaxy Millimeter/submillimeter Emission (<jats:sc>sígame</jats:sc>). <jats:sc>sígame</jats:sc> derives line emission in the far-infrared (FIR) for galaxies in particle-based cosmological hydrodynamics simulations by applying radiative transfer and physics recipes via a postprocessing step after completion of the simulation. In this version, a new technique is developed to model higher gas densities by parameterizing the probability distribution function (PDF) of the gas density in higher-resolution simulations run with the pseudo-Lagrangian, Voronoi mesh code <jats:sc>arepo</jats:sc>. The parameterized PDFs are used as a look-up table, and reach higher densities than in previous work. <jats:sc>sígame</jats:sc> v3 is tested on redshift <jats:italic>z</jats:italic> = 0 galaxies drawn from the <jats:sc>simba</jats:sc> cosmological simulation for eight FIR emission lines tracing vastly different phases of the interstellar medium. This version of <jats:sc>sígame</jats:sc> includes dust radiative transfer with S<jats:sc>kirt</jats:sc> and high-resolution photoionization models with C<jats:sc>loudy</jats:sc>, the latter sampled according to the density PDF of the <jats:sc>arepo</jats:sc> simulations to augment the densities in the cosmological simulation. The quartile distributions of the predicted line luminosities overlap with the observed range for nearby galaxies of similar star formation rate (SFR) for all but two emission lines: [O <jats:sc>i</jats:sc>]63 and CO(3–2), which are overestimated by median factors of 1.3 and 1.0 dex, respectively, compared to the observed line–SFR relation of mixed-type galaxies. We attribute the remaining disagreement with observations to the lack of precise attenuation of the interstellar light on sub-grid scales (≲200 pc) and differences in sample selection.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 88
Estimating the Effective Lifetime of the z ∼ 6 Quasar Population from the Composite Proximity Zone Profile
Karna A. Morey; Anna-Christina Eilers; Frederick B. Davies; Joseph F. Hennawi; Robert A. Simcoe
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 88
Virial Halo Mass Function in the Planck Cosmology
Masato Shirasaki; Tomoaki Ishiyama; Shin’ichiro Ando
<jats:title>Abstract</jats:title> <jats:p>We study halo mass functions with high-resolution <jats:italic>N</jats:italic>-body simulations under a ΛCDM cosmology. Our simulations adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds with the Planck satellite. We calibrate the halo mass functions for 10<jats:sup>8.5</jats:sup> ≲ <jats:italic>M</jats:italic> <jats:sub>vir</jats:sub>/(<jats:italic>h</jats:italic> <jats:sup>−1</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>) ≲ 10<jats:sup>15.0–0.45 <jats:italic>z</jats:italic> </jats:sup>, where <jats:italic>M</jats:italic> <jats:sub>vir</jats:sub> is the virial spherical-overdensity mass and redshift <jats:italic>z</jats:italic> ranges from 0 to 7. The halo mass function in our simulations can be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision, except for the highest masses at <jats:italic>z</jats:italic> ≤ 7. Our model predicts that the analytic prediction in Sheth & Tormen would overestimate the halo abundance at <jats:italic>z</jats:italic> = 6 with <jats:italic>M</jats:italic> <jats:sub>vir</jats:sub> = 10<jats:sup>8.5–10</jats:sup> <jats:italic>h</jats:italic> <jats:sup>−1</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> by 20%–30%. Our calibrated halo mass function provides a baseline model to constrain warm dark matter (WDM) by high-<jats:italic>z</jats:italic> galaxy number counts. We compare a cumulative luminosity function of galaxies at <jats:italic>z</jats:italic> = 6 with the total halo abundance based on our model and a recently proposed WDM correction. We find that WDM with its mass lighter than 2.71 keV is incompatible with the observed galaxy number density at a 2<jats:italic>σ</jats:italic> confidence level.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 89
Modeling the Galactic Neutron Star Population for Use in Continuous Gravitational-wave Searches
Brendan T. Reed; Alex Deibel; C. J. Horowitz
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 89
M17 MIR: A Massive Protostar with Multiple Accretion Outbursts *
Zhiwei Chen; Wei Sun; Rolf Chini; Martin Haas; Zhibo Jiang; Xuepeng Chen
<jats:title>Abstract</jats:title> <jats:p>We report the discovery of a massive protostar M17 MIR embedded in a hot molecular core in M17. The multiwavelength data obtained during 1993–2019 show significant mid-IR (MIR) variations, which can be split into three stages: the decreasing phase during 1993.03–mid-2004, the quiescent phase from mid-2004 to mid-2010, and the rebrightening phase from mid-2010 until now. The variation of the 22 GHz H<jats:sub>2</jats:sub>O maser emission, together with the MIR variation, indicates an enhanced disk accretion rate onto M17 MIR during the decreasing and rebrightening phases. Radiative transfer modeling of the spectral energy distributions of M17 MIR in the 2005 epoch (quiescent) and 2017 epoch (accretion outburst) constrains the basic stellar parameters of M17 MIR, which is an intermediate-mass protostar (<jats:italic>M</jats:italic> <jats:sub>*</jats:sub> ∼ 5.4 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>) with <jats:inline-formula> <jats:tex-math> <?CDATA ${\dot{M}}_{\mathrm{acc}}\sim 1.1\times {10}^{-5}\,{M}_{\odot }\,{\mathrm{yr}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mover accent="true"> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̇</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>acc</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>1.1</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>yr</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2151ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> in the 2005 epoch and <jats:inline-formula> <jats:tex-math> <?CDATA ${\dot{M}}_{\mathrm{acc}}\sim 1.7\times {10}^{-3}\,{M}_{\odot }\,{\mathrm{yr}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mover accent="true"> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̇</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>acc</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>1.7</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>yr</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2151ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> in the 2017 epoch. The enhanced <jats:inline-formula> <jats:tex-math> <?CDATA ${\dot{M}}_{\mathrm{acc}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mover accent="true"> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̇</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>acc</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2151ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> during outburst induces the luminosity outburst Δ<jats:italic>L</jats:italic> ≈ 7600<jats:italic> L</jats:italic> <jats:sub>⊙</jats:sub>. In the accretion outburst, a larger stellar radius is required to produce <jats:inline-formula> <jats:tex-math> <?CDATA ${\dot{M}}_{\mathrm{acc}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mover accent="true"> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̇</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> <mml:mrow> <mml:mi>acc</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac2151ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> consistent with the value estimated from the kinematics of H<jats:sub>2</jats:sub>O masers. M17 MIR shows two accretion outbursts (Δ<jats:italic>t</jats:italic> ∼ 9–20 yr) with outburst magnitudes of about 2 mag, separated by a 6 yr quiescent phase. The accretion outburst occupies 83% of the time over 26 yr. The accretion rate in outburst is variable with amplitude much lower than the contrast between quiescent and outburst phases. The extreme youth of M17 MIR suggests that minor accretion bursts are frequent in the earliest stages of massive star formation.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 90
Close Stellar Flybys Common in Low-mass Clusters
Susanne Pfalzner; Amith Govind
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 90
Catastrophic Cooling in Superwinds. II. Exploring the Parameter Space
Ashkbiz Danehkar; M. S. Oey; William J. Gray
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 91
Emission of Magnetar Bursts and Precursors of Neutron Star Mergers
Andrei M. Beloborodov
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 92
Solar Origin of Bare Ion Anomalies in the Solar Wind and Interplanetary Coronal Mass Ejections
Yeimy J. Rivera; Susan T. Lepri; John C. Raymond; Katharine K. Reeves; Michael L. Stevens; Liang Zhao
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 93