Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature Physics

Resumen/Descripción – provisto por la editorial en inglés
Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com

Información

Tipo de recurso:

revistas

ISSN impreso

1745-2473

ISSN electrónico

1745-2481

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Cobertura temática

Tabla de contenidos

Geometric description of clustering in directed networks

Antoine AllardORCID; M. Ángeles SerranoORCID; Marián BoguñáORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Laser ablation and fluid flows reveal the mechanism behind spindle and centrosome positioning

Hai-Yin WuORCID; Gökberk Kabacaoğlu; Ehssan Nazockdast; Huan-Cheng Chang; Michael J. ShelleyORCID; Daniel J. Needleman

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Anti-laser shows how to make waves behave

A. Douglas Stone

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Proximate spin liquid and fractionalization in the triangular antiferromagnet KYbSe2

A. O. ScheieORCID; E. A. Ghioldi; J. Xing; J. A. M. PaddisonORCID; N. E. Sherman; M. DupontORCID; L. D. Sanjeewa; Sangyun Lee; A. J. Woods; D. AbernathyORCID; D. M. PajerowskiORCID; T. J. WilliamsORCID; Shang-Shun Zhang; L. O. Manuel; A. E. TrumperORCID; C. D. PemmarajuORCID; A. S. Sefat; D. S. Parker; T. P. DevereauxORCID; R. MovshovichORCID; J. E. MooreORCID; C. D. BatistaORCID; D. A. Tennant

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Valley-polarized excitonic Mott insulator in WS2/WSe2 moiré superlattice

Zhen Lian; Yuze Meng; Lei MaORCID; Indrajit MaityORCID; Li YanORCID; Qiran Wu; Xiong Huang; Dongxue ChenORCID; Xiaotong ChenORCID; Xinyue Chen; Mark Blei; Takashi TaniguchiORCID; Kenji WatanabeORCID; Sefaattin TongayORCID; Johannes Lischner; Yong-Tao CuiORCID; Su-Fei ShiORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Impact of physicality on network structure

Márton PósfaiORCID; Balázs Szegedy; Iva BačićORCID; Luka BlagojevićORCID; Miklós Abért; János KertészORCID; László Lovász; Albert-László BarabásiORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Dependency of ERC-funded research on US collaborations

Sandeep Chowdhary; Nicolò DefenuORCID; Federico MusciottoORCID; Federico BattistonORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

A proximate model material for triangular lattice quantum spin liquids

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Rearranged under stress

Saswati GangulyORCID

Palabras clave: General Physics and Astronomy.

Pp. No disponible

Modulated Kondo screening along magnetic mirror twin boundaries in monolayer MoS2

Camiel van EfferenORCID; Jeison FischerORCID; Theo A. CostiORCID; Achim RoschORCID; Thomas MichelyORCID; Wouter JolieORCID

<jats:title>Abstract</jats:title><jats:p>When a single electron is confined to an impurity state in a metal, a many-body resonance emerges at the Fermi energy if the electron bath screens the impurity’s magnetic moment. This is the Kondo effect, originally introduced to explain the abnormal resistivity behaviour in bulk magnetic alloys, and it has been realized in many quantum systems over the past decades, ranging from heavy-fermion lattices down to adsorbed single atoms. Here we describe a Kondo system that allows us to experimentally resolve the spectral function consisting of impurity levels and a Kondo resonance in a large Kondo temperature range, as well as their spatial modulation. Our approach is based on a discrete half-filled quantum confined state within a MoS<jats:sub>2</jats:sub> grain boundary, which—in conjunction with numerical renormalization group calculations—enables us to test the predictive power of the Anderson model that is the basis of the microscopic understanding of Kondo physics.</jats:p>

Palabras clave: General Physics and Astronomy.

Pp. No disponible