Catálogo de publicaciones - revistas
Nature Biotechnology
Resumen/Descripción – provisto por la editorial en inglés
Nature Biotechnology is a monthly journal covering the science and business of biotechnology. It publishes new concepts in technology/methodology of relevance to the biological, biomedical, agricultural and environmental sciences as well as covers the commercial, political, ethical, legal, and societal aspects of this research. The first function is fulfilled by the peer-reviewed research section, the second by the expository efforts in the front of the journal. We provide researchers with news about business; we provide the business community with news about research developments.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 2012 / hasta dic. 2023 | Nature.com |
Información
Tipo de recurso:
revistas
ISSN impreso
1087-0156
ISSN electrónico
1546-1696
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
1996-
Cobertura temática
Tabla de contenidos
Single-cell recording of cellular RNAs in bacteria
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Unidirectional single-file transport of full-length proteins through a nanopore
Luning Yu; Xinqi Kang; Fanjun Li; Behzad Mehrafrooz; Amr Makhamreh; Ali Fallahi; Joshua C. Foster; Aleksei Aksimentiev; Min Chen; Meni Wanunu
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase
Huawei Tong; Xuchen Wang; Yuanhua Liu; Nana Liu; Yun Li; Jiamin Luo; Qian Ma; Danni Wu; Jiyong Li; Chunlong Xu; Hui Yang
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Protein identification using a digestion-free nanopore approach
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening
Jimin Tan; Nina Shenker-Tauris; Javier Rodriguez-Hernaez; Eric Wang; Theodore Sakellaropoulos; Francesco Boccalatte; Palaniraja Thandapani; Jane Skok; Iannis Aifantis; David Fenyö; Bo Xia; Aristotelis Tsirigos
<jats:title>Abstract</jats:title><jats:p>Investigating how chromatin organization determines cell-type-specific gene expression remains challenging. Experimental methods for measuring three-dimensional chromatin organization, such as Hi-C, are costly and have technical limitations, restricting their broad application particularly in high-throughput genetic perturbations. We present C.Origami, a multimodal deep neural network that performs de novo prediction of cell-type-specific chromatin organization using DNA sequence and two cell-type-specific genomic features—CTCF binding and chromatin accessibility. C.Origami enables in silico experiments to examine the impact of genetic changes on chromatin interactions. We further developed an in silico genetic screening approach to assess how individual DNA elements may contribute to chromatin organization and to identify putative cell-type-specific <jats:italic>trans</jats:italic>-acting regulators that collectively determine chromatin architecture. Applying this approach to leukemia cells and normal T cells, we demonstrate that cell-type-specific in silico genetic screening, enabled by C.Origami, can be used to systematically discover novel chromatin regulation circuits in both normal and disease-related biological systems.</jats:p>
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Improved cytosine base editors generated from TadA variants
Dieter K. Lam; Patricia R. Feliciano; Amena Arif; Tanggis Bohnuud; Thomas P. Fernandez; Jason M. Gehrke; Phil Grayson; Kin D. Lee; Manuel A. Ortega; Courtney Sawyer; Noah D. Schwaegerle; Leila Peraro; Lauren Young; Seung-Joo Lee; Giuseppe Ciaramella; Nicole M. Gaudelli
<jats:title>Abstract</jats:title><jats:p>Cytosine base editors (CBEs) enable programmable genomic C·G-to-T·A transition mutations and typically comprise a modified CRISPR–Cas enzyme, a naturally occurring cytidine deaminase, and an inhibitor of uracil repair. Previous studies have shown that CBEs utilizing naturally occurring cytidine deaminases may cause unguided, genome-wide cytosine deamination. While improved CBEs that decrease stochastic genome-wide off-targets have subsequently been reported, these editors can suffer from suboptimal on-target performance. Here, we report the generation and characterization of CBEs that use engineered variants of TadA (CBE-T) that enable high on-target C·G to T·A across a sequence-diverse set of genomic loci, demonstrate robust activity in primary cells and cause no detectable elevation in genome-wide mutation. Additionally, we report cytosine and adenine base editors (CABEs) catalyzing both A-to-I and C-to-U editing (CABE-Ts). Together with ABEs, CBE-Ts and CABE-Ts enable the programmable installation of all transition mutations using laboratory-evolved TadA variants with improved properties relative to previously reported CBEs.</jats:p>
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Fresh from the biotech pipeline: fewer approvals, but biologics gain share
Melanie Senior
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123
Laurent Gauthier; Angela Virone-Oddos; Jochen Beninga; Benjamin Rossi; Céline Nicolazzi; Céline Amara; Audrey Blanchard-Alvarez; Nicolas Gourdin; Jacqueline Courta; Alexandra Basset; Magali Agnel; Franceline Guillot; Gwendoline Grondin; Hélène Bonnevaux; Anne-Laure Bauchet; Ariane Morel; Yannis Morel; Marielle Chiron; Eric Vivier
<jats:title>Abstract</jats:title><jats:p>CD123, the alpha chain of the IL-3 receptor, is an attractive target for acute myeloid leukemia (AML) treatment. However, cytotoxic antibodies or T cell engagers targeting CD123 had insufficient efficacy or safety in clinical trials. We show that expression of CD64, the high-affinity receptor for human IgG, on AML blasts confers resistance to anti-CD123 antibody-dependent cell cytotoxicity (ADCC) in vitro. We engineer a trifunctional natural killer cell engager (NKCE) that targets CD123 on AML blasts and NKp46 and CD16a on NK cells (CD123-NKCE). CD123-NKCE has potent antitumor activity against primary AML blasts regardless of CD64 expression and induces NK cell activation and cytokine secretion only in the presence of AML cells. Its antitumor activity in a mouse CD123<jats:sup>+</jats:sup> tumor model exceeds that of the benchmark ADCC-enhanced antibody. In nonhuman primates, it had prolonged pharmacodynamic effects, depleting CD123<jats:sup>+</jats:sup> cells for more than 10 days with no signs of toxicity and very low inflammatory cytokine induction over a large dose range. These results support clinical development of CD123-NKCE.</jats:p>
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Droplet-based transcriptome profiling of individual synapses
Muchun Niu; Wenjian Cao; Yongcheng Wang; Qiangyuan Zhu; Jiayi Luo; Baiping Wang; Hui Zheng; David A. Weitz; Chenghang Zong
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible
Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection
D. Christopher Sloas; Jeremy C. Tran; Alexander M. Marzilli; John T. Ngo
Palabras clave: Biomedical Engineering; Molecular Medicine; Applied Microbiology and Biotechnology; Bioengineering; Biotechnology.
Pp. No disponible