Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

EPJ Data Science

Resumen/Descripción – provisto por la editorial en inglés
The 21st century is currently witnessing the establishment of data-driven science as a complementary approach to the traditional hypothesis-driven method. This (r)evolution accompanying the paradigm shift from reductionism to complex systems sciences has already largely transformed the natural sciences and is about to bring the same changes to the techno-socio-economic sciences, viewed broadly.
Palabras clave – provistas por la editorial

data analysis; data mining; data enrichment

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No requiere desde ene. 2012 / hasta nov. 2024 Directory of Open Access Journals acceso abierto
No requiere desde may. 2012 / hasta nov. 2024 SpringerLink acceso abierto

Información

Tipo de recurso:

revistas

ISSN electrónico

2193-1127

Editor responsable

Springer Nature

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Fecha de publicación

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Tabla de contenidos

Emergent local structures in an ecosystem of social bots and humans on Twitter

Abdullah Alrhmoun; János KertészORCID

<jats:title>Abstract</jats:title><jats:p>Bots in online social networks can be used for good or bad but their presence is unavoidable and will increase in the future. To investigate how the interaction networks of bots and humans evolve, we created six social bots on Twitter with AI language models and let them carry out standard user operations. Three different strategies were implemented for the bots: a trend-targeting strategy (TTS), a keywords-targeting strategy (KTS) and a user-targeting strategy (UTS). We examined the interaction patterns such as targeting users, spreading messages, propagating relationships, and engagement. We focused on the emergent local structures or motifs and found that the strategies of the social bots had a significant impact on them. Motifs resulting from interactions with bots following TTS or KTS are simple and show significant overlap, while those resulting from interactions with UTS-governed bots lead to more complex motifs. These findings provide insights into human-bot interaction patterns in online social networks, and can be used to develop more effective bots for beneficial tasks and to combat malicious actors.</jats:p>

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Correction: Temporal network analysis using zigzag persistence

Audun Myers; David Muñoz; Firas A. KhasawnehORCID; Elizabeth Munch

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Human mobility reshaped? Deciphering the impacts of the Covid-19 pandemic on activity patterns, spatial habits, and schedule habits

Mohamed Amine Bouzaghrane; Hassan Obeid; Marta González; Joan Walker

<jats:title>Abstract</jats:title><jats:p>Despite the historically documented regularity in human mobility patterns, the relaxation of spatial and temporal constraints, brought by the widespread adoption of telecommuting and e-commerce during the COVID-19 pandemic, as well as a growing desire for flexible work arrangements in a post-pandemic work, indicates a potential reshaping of these patterns. In this paper, we investigate the multifaceted impacts of relaxed spatio-temporal constraints on human mobility, using well-established metrics from the travel behavior literature. Further, we introduce a novel metric for schedule regularity, accounting for specific day-of-week characteristics that previous approaches overlooked. Building on the large body of literature on the impacts of COVID-19 on human mobility, we make use of passively tracked Point of Interest (POI) data for approximately 21,700 smartphone users in the US, and analyze data between January 2020 and September 2022 to answer two key questions: (1) has the COVID-19 pandemic and its associated relaxation of spatio-temporal activity patterns reshaped the different aspects of human mobility, and (2) have we achieved a state of stable post-pandemic “new normal”? We hypothesize that the relaxation of the spatiotemporal constraints around key activities will result in people exhibiting less regular schedules. Findings reveal a complex landscape: while some mobility indicators have reverted to pre-pandemic norms, such as trip frequency and travel distance, others, notably at-home dwell-time, persist at altered levels, suggesting a recalibration rather than a return to past behaviors. Most notably, our analysis reveals a paradox: despite the documented large-scale shift towards flexible work arrangements, schedule habits have strengthened rather than relaxed, defying our initial hypotheses and highlighting a desire for regularity. The study’s results contribute to a deeper understanding of the post-pandemic “new normal”, offering key insights on how multiple facets of travel behavior were reshaped, if at all, by the COVID-19 pandemic, and will help inform transportation planning in a post-pandemic world.</jats:p>

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Online disinformation in the 2020 U.S. election: swing vs. safe states

Manuel PratelliORCID; Marinella Petrocchi; Fabio Saracco; Rocco De Nicola

<jats:title>Abstract</jats:title><jats:p>For U.S. presidential elections, most states use the so-called winner-take-all system, in which the state’s presidential electors are awarded to the winning political party in the state after a popular vote phase, regardless of the actual margin of victory. Therefore, election campaigns are especially intense in states where there is no clear direction on which party will be the winning party. These states are often referred to as <jats:italic>swing states</jats:italic>. To measure the impact of such an election law on the campaigns, we analyze the Twitter activity surrounding the 2020 US preelection debate, with a particular focus on the spread of disinformation. We find that about 88% of the online traffic was associated with swing states. In addition, the sharing of links to unreliable news sources is significantly more prevalent in tweets associated with swing states: in this case, untrustworthy tweets are predominantly generated by automated accounts. Furthermore, we observe that the debate is mostly led by two main communities, one with a predominantly Republican affiliation and the other with accounts of different political orientations. Most of the disinformation comes from the former.</jats:p>

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Unveiling public perception of AI ethics: an exploration on Wikipedia data

Mengyi Wei; Yu Feng; Chuan Chen; Peng Luo; Chenyu ZuoORCID; Liqiu Meng

<jats:title>Abstract</jats:title><jats:p>Artificial Intelligence (AI) technologies have exposed more and more ethical issues while providing services to people. It is challenging for people to realize the occurrence of AI ethical issues in most cases. The lower the public awareness, the more difficult it is to address AI ethical issues. Many previous studies have explored public reactions and opinions on AI ethical issues through questionnaires and social media platforms like Twitter. However, these approaches primarily focus on categorizing popular topics and sentiments, overlooking the public’s potential lack of knowledge underlying these issues. Few studies revealed the holistic knowledge structure of AI ethical topics and the relations among the subtopics. As the world’s largest online encyclopedia, Wikipedia encourages people to jointly contribute and share their knowledge by adding new topics and following a well-accepted hierarchical structure. Through public viewing and editing, Wikipedia serves as a proxy for knowledge transmission. This study aims to analyze how the public comprehend the body of knowledge of AI ethics. We adopted the community detection approach to identify the hierarchical community of the AI ethical topics, and further extracted the AI ethics-related entities, which are proper nouns, organizations, and persons. The findings reveal that the primary topics at the top-level community, most pertinent to AI ethics, predominantly revolve around knowledge-based and ethical issues. Examples include transitions from Information Theory to Internet Copyright Infringement. In summary, this study contributes to three points, (1) to present the holistic knowledge structure of AI ethics, (2) to evaluate and improve the existing body of knowledge of AI ethics, (3) to enhance public perception of AI ethics to mitigate the risks associated with AI technologies.</jats:p>

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Science as exploration in a knowledge landscape: tracing hotspots or seeking opportunity?

Feifan Liu; Shuang Zhang; Haoxiang XiaORCID

<jats:title>Abstract</jats:title><jats:p>The selection of research topics by scientists can be viewed as an exploration process conducted by individuals with cognitive limitations traversing a complex cognitive landscape influenced by both individual and social factors. While existing theoretical investigations have provided valuable insights, the intricate and multifaceted nature of modern science hinders the implementation of empirical experiments. This study leverages advancements in Geographic Information System (GIS) techniques to investigate the patterns and dynamic mechanisms of topic-transition among scientists. By constructing the knowledge space across 6 large-scale disciplines, we depict the trajectories of scientists’ topic transitions within this space, measuring the flow and distance of research regions across different sub-spaces. Our findings reveal a predominantly conservative pattern of topic transition at the individual level, with scientists primarily exploring local knowledge spaces. Furthermore, simulation modeling analysis identifies research intensity, driven by the concentration of scientists within a specific region, as the key facilitator of topic transition. Conversely, the knowledge distance between fields serves as a significant barrier to exploration. Notably, despite potential opportunities for breakthrough discoveries at the intersection of subfields, empirical evidence suggests that these opportunities do not exert a strong pull on scientists, leading them to favor familiar research areas. Our study provides valuable insights into the exploration dynamics of scientific knowledge production, highlighting the influence of individual cognition, social factors, and the intrinsic structure of the knowledge landscape itself. These findings offer a framework for understanding and potentially shaping the course of scientific progress.</jats:p>

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Unveiling the silent majority: stance detection and characterization of passive users on social media using collaborative filtering and graph convolutional networks

Zhiwei ZhouORCID; Erick ElejaldeORCID

<jats:title>Abstract</jats:title><jats:p>Social Media (SM) has become a popular medium for individuals to share their opinions on various topics, including politics, social issues, and daily affairs. During controversial events such as political elections, active users often proclaim their stance and try to persuade others to support them. However, disparities in participation levels can lead to misperceptions and cause analysts to misjudge the support for each side. For example, current models usually rely on content production and overlook a vast majority of civically engaged users who passively consume information. These “silent users” can significantly impact the democratic process despite being less vocal. Accounting for the stances of this silent majority is critical to improving our reliance on SM to understand and measure social phenomena. Thus, this study proposes and evaluates a new approach for silent users’ stance prediction based on collaborative filtering and Graph Convolutional Networks, which exploits multiple relationships between users and topics. Furthermore, our method allows us to describe users with different stances and online behaviors. We demonstrate its validity using real-world datasets from two related political events. Specifically, we examine user attitudes leading to the Chilean constitutional referendums in 2020 and 2022 through extensive Twitter datasets. In both datasets, our model outperforms the baselines by over 9% at the edge- and the user level. Thus, our method offers an improvement in effectively quantifying the support and creating a multidimensional understanding of social discussions on SM platforms, especially during polarizing events.</jats:p>

Palabras clave: Computational Mathematics; Computer Science Applications; Modeling and Simulation.

Pp. No disponible

Suspended accounts align with the Internet Research Agency misinformation campaign to influence the 2016 US election

Matteo SerafinoORCID; Zhenkun Zhou; José S. Andrade; Alexandre BovetORCID; Hernán A. Makse

<jats:title>Abstract</jats:title><jats:p>The ongoing debate surrounding the impact of the Internet Research Agency’s (IRA) social media campaign during the 2016 U.S. presidential election has largely overshadowed the involvement of other actors. Our analysis brings to light a substantial group of suspended Twitter users, outnumbering the IRA user group by a factor of 60, who align with the ideologies of the IRA campaign. Our study demonstrates that this group of suspended Twitter accounts significantly influenced individuals categorized as undecided or weak supporters, potentially with the aim of swaying their opinions, as indicated by Granger causality.</jats:p>

Pp. No disponible

Scaling law of real traffic jams under varying travel demand

Rui Chen; Yuming LinORCID; Huan Yan; Jiazhen Liu; Yu Liu; Yong Li

<jats:title>Abstract</jats:title><jats:p>The escalation of urban traffic congestion has reached a critical extent due to rapid urbanization, capturing considerable attention within urban science and transportation research. Although preceding studies have validated the scale-free distributions in spatio-temporal congestion clusters across cities, the influence of travel demand on that distribution has yet to be explored. Using a unique traffic dataset during the COVID-19 pandemic in Shanghai 2022, we present empirical evidence that travel demand plays a pivotal role in shaping the scaling laws of traffic congestion. We uncover a noteworthy negative linear correlation between the travel demand and the traffic resilience represented by scaling exponents of congestion cluster size and recovery duration. Additionally, we reveal that travel demand broadly dominates the scale of congestion in the form of scaling laws, including the aggregated volume of congestion clusters, the number of congestion clusters, and the number of congested roads. Subsequent micro-level analysis of congestion propagation also unveils that cascade diffusion determines the demand sensitivity of congestion, while other intrinsic components, namely spontaneous generation and dissipation, are rather stable. Our findings of traffic congestion under diverse travel demand can profoundly enrich our understanding of the scale-free nature of traffic congestion and provide insights into internal mechanisms of congestion propagation.</jats:p>

Pp. No disponible

Developing a hierarchical model for unraveling conspiracy theories

Mohsen GhasemizadeORCID; Jeremiah Onaolapo

<jats:title>Abstract</jats:title><jats:p>A conspiracy theory (CT) suggests covert groups or powerful individuals secretly manipulate events. Not knowing about existing conspiracy theories could make one more likely to believe them, so this work aims to compile a list of CTs shaped as a tree that is as comprehensive as possible. We began with a manually curated ‘tree’ of CTs from academic papers and Wikipedia. Next, we examined 1769 CT-related articles from four fact-checking websites, focusing on their core content, and used a technique called Keyphrase Extraction to label the documents. This process yielded 769 identified conspiracies, each assigned a label and a family name. The second goal of this project was to detect whether an article is a conspiracy theory, so we built a binary classifier with our labeled dataset. This model uses a transformer-based machine learning technique and is pre-trained on a large corpus called RoBERTa, resulting in an F1 score of 87%. This model helps to identify potential conspiracy theories in new articles. We used a combination of clustering (HDBSCAN) and a dimension reduction technique (UMAP) to assign a label from the tree to these new articles detected as conspiracy theories. We then labeled these groups accordingly to help us match them to the tree. These can lead us to detect new conspiracy theories and expand the tree using computational methods. We successfully generated a tree of conspiracy theories and built a pipeline to detect and categorize conspiracy theories within any text corpora. This pipeline gives us valuable insights through any databases formatted as text.</jats:p>

Pp. No disponible