Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Creating Ligands with Multiple Personalities

Robert H. Crabtree

<jats:p>Ligands are being designed to respond to the solution environment and tune the reactivity of the transition metals to which they bind.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 455-456

The Flu's Proton Escort

Giacomo Fiorin; Vincenzo Carnevale; William F. DeGrado

<jats:p>A flurry of structural data provides sometimes conflicting insights into the M2 proton channel.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 456-458

Chaos in the Gulf

Jean-Luc Thiffeault

<jats:p>Sophisticated mathematical analysis is providing insights into how the oil released in the Deepwater Horizon disaster is dispersing.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 458-459

The Long-Term Benefits of Self-Rejection

Stephen I. Wright; Spencer C. H. Barrett

<jats:p>A trait that prevents self-fertilization in plants appears to promote evolutionary diversification.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 459-460

Environment and Disease Risks

Stephen M. Rappaport; Martyn T. Smith

<jats:p>A new paradigm is needed to assess how a lifetime of exposure to environmental factors affects the risk of developing chronic diseases.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 460-461

Neutrino Spectroscopy Can Probe the Dark Matter Content in the Sun

Ilídio Lopes; Joseph Silk

<jats:p>Dark matter in the center of the Sun would affect its internal structure and lead to a distinctive neutrino emission pattern.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 462-462

Detection of Water in the LCROSS Ejecta Plume

Anthony Colaprete; Peter Schultz; Jennifer Heldmann; Diane Wooden; Mark Shirley; Kimberly Ennico; Brendan Hermalyn; William Marshall; Antonio Ricco; Richard C. Elphic; David Goldstein; Dustin Summy; Gwendolyn D. Bart; Erik Asphaug; Don Korycansky; David Landis; Luke Sollitt

<jats:title>Watering the Moon</jats:title> <jats:p> About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, <jats:bold> Colaprete <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="463" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186986">463</jats:related-article> ; see the news story by <jats:bold> <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6003" page="434" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.2010.330.6003.330_434">Kerr</jats:related-article> </jats:bold> ; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. <jats:bold> Schultz <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="468" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1187454">468</jats:related-article> ) monitored the different stages of the impact and the resulting plume. <jats:bold> Gladstone <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="472" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186474">472</jats:related-article> ), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H <jats:sub>2</jats:sub> , CO, Ca, Hg, and Mg in the impact plume, and <jats:bold> Hayne <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="477" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1197135">477</jats:related-article> ) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. <jats:bold> Paige <jats:italic>et al.</jats:italic> </jats:bold> (p. 479) mapped cryogenic zones predictive of volatile entrapment, and <jats:bold> Mitrofanov <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="483" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1185696">483</jats:related-article> ) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 463-468

The LCROSS Cratering Experiment

Peter H. Schultz; Brendan Hermalyn; Anthony Colaprete; Kimberly Ennico; Mark Shirley; William S. Marshall

<jats:title>Watering the Moon</jats:title> <jats:p> About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, <jats:bold> Colaprete <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="463" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186986">463</jats:related-article> ; see the news story by <jats:bold> <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6003" page="434" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.2010.330.6003.330_434">Kerr</jats:related-article> </jats:bold> ; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. <jats:bold> Schultz <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="468" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1187454">468</jats:related-article> ) monitored the different stages of the impact and the resulting plume. <jats:bold> Gladstone <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="472" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186474">472</jats:related-article> ), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H <jats:sub>2</jats:sub> , CO, Ca, Hg, and Mg in the impact plume, and <jats:bold> Hayne <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="477" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1197135">477</jats:related-article> ) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. <jats:bold> Paige <jats:italic>et al.</jats:italic> </jats:bold> (p. 479) mapped cryogenic zones predictive of volatile entrapment, and <jats:bold> Mitrofanov <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="483" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1185696">483</jats:related-article> ) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 468-472

LRO-LAMP Observations of the LCROSS Impact Plume

G. Randall Gladstone; Dana M. Hurley; Kurt D. Retherford; Paul D. Feldman; Wayne R. Pryor; Jean-Yves Chaufray; Maarten Versteeg; Thomas K. Greathouse; Andrew J. Steffl; Henry Throop; Joel Wm. Parker; David E. Kaufmann; Anthony F. Egan; Michael W. Davis; David C. Slater; Joey Mukherjee; Paul F. Miles; Amanda R. Hendrix; Anthony Colaprete; S. Alan Stern

<jats:title>Watering the Moon</jats:title> <jats:p> About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, <jats:bold> Colaprete <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="463" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186986">463</jats:related-article> ; see the news story by <jats:bold> <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6003" page="434" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.2010.330.6003.330_434">Kerr</jats:related-article> </jats:bold> ; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. <jats:bold> Schultz <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="468" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1187454">468</jats:related-article> ) monitored the different stages of the impact and the resulting plume. <jats:bold> Gladstone <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="472" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186474">472</jats:related-article> ), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H <jats:sub>2</jats:sub> , CO, Ca, Hg, and Mg in the impact plume, and <jats:bold> Hayne <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="477" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1197135">477</jats:related-article> ) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. <jats:bold> Paige <jats:italic>et al.</jats:italic> </jats:bold> (p. 479) mapped cryogenic zones predictive of volatile entrapment, and <jats:bold> Mitrofanov <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="483" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1185696">483</jats:related-article> ) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 472-476

Diviner Lunar Radiometer Observations of the LCROSS Impact

Paul O. Hayne; Benjamin T. Greenhagen; Marc C. Foote; Matthew A. Siegler; Ashwin R. Vasavada; David A. Paige

<jats:title>Watering the Moon</jats:title> <jats:p> About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, <jats:bold> Colaprete <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="463" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186986">463</jats:related-article> ; see the news story by <jats:bold> <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6003" page="434" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.2010.330.6003.330_434">Kerr</jats:related-article> </jats:bold> ; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. <jats:bold> Schultz <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="468" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1187454">468</jats:related-article> ) monitored the different stages of the impact and the resulting plume. <jats:bold> Gladstone <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="472" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1186474">472</jats:related-article> ), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H <jats:sub>2</jats:sub> , CO, Ca, Hg, and Mg in the impact plume, and <jats:bold> Hayne <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="477" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1197135">477</jats:related-article> ) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. <jats:bold> Paige <jats:italic>et al.</jats:italic> </jats:bold> (p. 479) mapped cryogenic zones predictive of volatile entrapment, and <jats:bold> Mitrofanov <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="483" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1185696">483</jats:related-article> ) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 477-479