Catálogo de publicaciones - libros
Conscious in a Vegetative State?: A Critique of the PVS Concept
Peter McCullagh
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Ethics; Pathology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-2629-4
ISBN electrónico
978-1-4020-2630-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science + Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
History and Context of the Persistent Vegetative State
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 1-28
The Pathological Basis of Vegetative States
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 29-42
Authoritative Statements
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 43-57
Consciousness
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 58-84
Sentience
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 85-99
Electrophysiological and Imaging Studies of Patients in Vegetative States
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 100-130
An Analogy between Anaesthesia and Persistent Vegetative State
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 131-140
Diagnosis and Misdiagnosis of Vegetative States
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 141-159
Emergence from a Vegetative State
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 160-174
A Perspective of Disability
Peter McCullagh
This last chapter of the book is concerned with subexponential fixed-parameter tractability, that is, with the class . Subexponential fixed-parameter tractability is intimately linked with the theory of exact (exponential) algorithms for hard problems, which is concerned with algorithms for NP-hard problems that are better than the trivial exhaustive search algorithms, though still exponential. For example, there has been a long sequence of papers on exact algorithms for the 3-satisfiability problem; the currently best (randomized) algorithm for this problem has a running time of time for instances with n variables. There are numerous further examples of very nice nontrivial algorithms for hard problems, but a systematic complexity theory is still in its infancy. A question that has turned out to be central for such a theory is whether the 3-satisfiability problem can be solved in time .
Pp. 175-192