Catálogo de publicaciones - libros
General Relativity
N. M. J. Woodhouse
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-84628-486-1
ISBN electrónico
978-1-84628-487-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag London Limited 2007
Cobertura temática
Tabla de contenidos
Gravitational Waves
In the last chapter, we saw that in the weak-field approximation, Einstein’s equations for a perturbation of the Minkowski metric can be reduced to $$ \square w_{ab} = - 16\pi T_{ab} ,$$ in the de Donder gauge [see (10.2)]. This is an inhomogeneous wave equation, with the energy-momentum tensor as source. It is strongly reminiscent of Maxwell’s equations for the four-potential in the Lorenz gauge and it has the same implication. Maxwell’s equations imply that moving charges generate electromagnetic waves. Einstein’s equations imply that moving masses generate gravitational waves.
Palabras clave: Black Hole; Plane Wave; Gauge Transformation; Gravitational Wave; Quadrupole Moment.
Pp. 145-156
Redshift and Horizons
When one observer sends light signals to another, the frequency of the light measured at emission by the first observer is generally not the same as that measured at reception by the second. Even in special relativity, the light is redshifted if the second is moving away from the first. This is the Doppler effect. In general relativity, there is a gravitational redshift when both are at rest in the gravitational field of a static spherically symmetric body, and the first is below the second.
Palabras clave: Black Hole; Event Horizon; Minkowski Space; Null Geodesic; Cosmological Horizon.
Pp. 157-177