Catálogo de publicaciones - libros
Extreme Weather Events and Public Health Responses
Wilhelm Kirch ; Roberto Bertollini ; Bettina Menne (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-24417-2
ISBN electrónico
978-3-540-28862-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© World Health Organization 2005
Cobertura temática
Tabla de contenidos
Epidemiologic Study of Mortality During Summer 2003 in Italian Regional Capitals: Results of a Rapid Survey
Susanna Conti; Paola Meli; Giada Minelli; Renata Solimini; Virgilia Toccaceli; Monica Vichi; M. Carmen Beltrano; Luigi Perini
Following the unusually hot summer in 2003 and the dramatic news from neighbouring countries such as France, the Italian Minister of Health commissioned an epidemiologic mortality study to investigate whether there had been an excess of deaths in Italy, particularly for the elderly population. Communal offices, which provide vital statistics, were asked to provide data on the number of deaths among residents between June 1 and August 31, for the years 2003 and 2002, for the 21 capital cities of Italy’s regions. A mortality increase of 3,134 deaths was observed, most of which (92 %) occurred among persons aged 75 years and older. The highest increases were observed in northwestern cities (Turin, Milan, Genoa). A clear correlation was observed between mortality and climatic indexes (maximum temperature, Humidex).
- Temperature Extremes and Health Impact | Pp. 109-120
Heat Waves in Italy: Cause Specific Mortality and the Role of Educational Level and Socio-Economic Conditions
P. Michelozzi; F. de ’Donato; L. Bisanti; A. Russo; E. Cadum; M. DeMaria; M. D’Ovidio; G. Costa; C. A. Perucci
It is only during the last five years that Canadian cities have begun to develop formal programs to protect the public’s health from the effects of summertime heat. Toronto’s (Ontario) Hot Weather Response Plan followed recommendations from advisory committees for seniors and for the homeless. The public health department was confronted with a rain-storm on the first day, in 1999, that it issued a heat alert. Toronto has since instituted a two-level alert and emergency response with action levels based on the estimation of mortality impacts through a synoptic model developed at the University of Delaware. Key to the program is media alerts and community partnerships to aid vulnerable people. Montreal’s (Quebec) approach has been to issue public advisories based on real and apparent temperature thresholds elaborated in collaboration with the Canadian Meteorological Service. Montreal has instituted a program of research and action designed to inform the population and to identify and mitigate population vulnerabilities in order to make residents more resistant to the effects on health of heat. Priority areas for health protection include hospitals and nursing homes, few of which are now air-conditioned; rather than retrofit air conditioning, relative air-cooling and air dehumidification have been proposed where feasible. In the community, local health centers target their vulnerable elderly clients requiring follow-up during heat waves based on the identification of factors such as dehydrating medications, social isolation, and lack of access to a nearby cooling room. A heat wave emergency response plan, based on the mobilization and updating of existing programs, is coordinated by civil defense authorities, advised by the city’s public health department.
- Temperature Extremes and Health Impact | Pp. 121-127
Lessons of the 2003 Heat-Wave in France and Action Taken to Limit the Effects of Future Heat-Waves
T. Michelon; P. Magne; F. Simon-Delavelle
In August 2003, France was hit by a severe heat-wave, with catastrophic health consequences (an imputed 14,800 deaths). This health crisis was unforeseen, was only detected belatedly and brought to the fore several deficiencies in the French public health system: a limited number of experts working in the sphere; poor exchange of information between several public organizations which were understrength because of the summer holidays and whose responsibilities were not clearly defined in this particular area; health authorities overwhelmed by the influx of patients; crematoria/cemeteries unable to deal with the influx of bodies; nursing homes underequipped with air-conditioning and in manpower crisis; and a large number of elderly people living alone without a support system and without proper guidelines to protect themselves from the heat.
This health crisis, without precedent since the Second World War, has had serious repercussions and has led the French government to take various steps to limit the effects on public health of any future heat-waves. Firstly, a number of studies are looking at the risk factors associated with the heat-wave. These should lead, in particular, to action thresholds being defined for given meteorological parameters. Secondly, a health surveillance (checks on the number of admissions to emergency wards) and environmental surveillance (meteorological data) mechanism is to be put in place. Finally, national and local action plans are to be drawn up by June 2004. These will clearly identify the public organizations with responsibility for heat-wave issues, their roles and the action to be taken at each level.
- Response to Temperature Extremes | Pp. 131-140
Examples of Heat Health Warning Systems: Lisbon’s ÍCARO’s Surveillance System, Summer of 2003
Paulo Jorge Nogueira
During the summer of 2003 Portugal was under unusual heat stress, particularly in the period from 27th July to 15th August, when almost all Portuguese districts had weekly maximum temperatures above 32 °C.
In Portugal an operational Heat Health Warning System has existed since the summer of 1999. This system is based on meteorological data and gives three days advanced heat wave predictions. This 2003 summer had several unusual heat periods that were extremely well predicted.
This article aims at presenting the Heat Health Warning System, detailing its background, methods and its five years experience. Beyond that a particular review of the summer of 2003 is done.
The 2003 summer July–August 17 day heat wave seems to have generated about 2200 excess deaths. When age, sex and district population adjustments are made the excess mortality is evaluated at 1953 heat related deceased.
Heat related mortality affected mainly elder and female individuals.
The surveillance partners had difficulties in conveying out messages to the population, using the media, late in the heat stress period.
Our 2003 summer experience lead to the conclusion that active ways must be sought to convey information to the population, when such a silent disaster is predicted. Passive systems, such as using the media to spread messages of interest during heat stress periods, are not reliable especially in a very long heat wave.
- Response to Temperature Extremes | Pp. 141-159
Lessons from the Heat-Wave Epidemic in France (Summer 2003)
L. Abenhaim
This article relates the experiences of the exceptional heat wave of the summer 2003 in France to heat related events as a whole. It focuses on five issues: first, whether heat-waves should be considered as epidemics or as endemic events in order to achieve efficient mitigating strategies. It is recommended to consider heat-waves as both, although it is clear that epidemic situations cannot be dealt with properly without a more general program to decrease the effects of endemic heat-related ill health. Second, it is stressed that there is no model available for predicting the occurrence of future epidemics with the required sensitivity and specificity: More detailed analysis has to be carried out. In addition, it is recommended that the threshold for future relief actions be lowered. Third, the issue of what surveillance system is required to detect epidemics of heat-related illnessis addressed. Fourth, the efficacy and effectiveness of prevention plans are briefly evaluated as well as what must be done during epidemics. Finally, the relationship between epidemics and polical crises is outlined.
The heat-wave related epidemics experienced in various countries of Europe during the summer of 2003 has put the issue of extreme heat on the agenda of public health professionals and decision-makers. As with any threat to the health of large populations, the issues to be addressed are those of the prediction and the prevention of the consequences of heat-waves on the one hand and those of the detection of adverse effects and emergency measures to be taken during the episodes on the other. This paper draws conclusions from the lessons learned mainly in France, but also attempts at broadening the scope to heat related events as a whole.
- Response to Temperature Extremes | Pp. 161-166
How Toronto and Montreal (Canada) Respond to Heat
T. Kosatsky; N. King; B. Henry
It is only during the last five years that Canadian cities have begun to develop formal programs to protect the public’s health from the effects of summertime heat. Toronto’s (Ontario) Hot Weather Response Plan followed recommendations from advisory committees for seniors and for the homeless. The public health department was confronted with a rain-storm on the first day, in 1999, that it issued a heat alert. Toronto has since instituted a two-level alert and emergency response with action levels based on the estimation of mortality impacts through a synoptic model developed at the University of Delaware. Key to the program is media alerts and community partnerships to aid vulnerable people. Montreal’s (Quebec) approach has been to issue public advisories based on real and apparent temperature thresholds elaborated in collaboration with the Canadian Meteorological Service. Montreal has instituted a program of research and action designed to inform the population and to identify and mitigate population vulnerabilities in order to make residents more resistant to the effects on health of heat. Priority areas for health protection include hospitals and nursing homes, few of which are now air-conditioned; rather than retrofit air conditioning, relative air-cooling and air dehumidification have been proposed where feasible. In the community, local health centers target their vulnerable elderly clients requiring follow-up during heat waves based on the identification of factors such as dehydrating medications, social isolation, and lack of access to a nearby cooling room. A heat wave emergency response plan, based on the mobilization and updating of existing programs, is coordinated by civil defense authorities, advised by the city’s public health department.
- Response to Temperature Extremes | Pp. 167-171
Lessons to be Learned from the 2002 Floods in Dresden, Germany
D. Meusel; W. Kirch
Let me finally summarize the most important points from the Dresden flood: when severe floods occur, as in 2002, the following three points should be considered. Firstly, the public health community has to be prepared with regard to public hygiene. Secondly, important hospital equipment, such as electric power supply, has to be assembled in a “waterproof” environment. Finally, for general crisis management, the decision hierarchy between hospitals and administrative authorities should be set up prior to the crisis.
- Flooding: The Impacts on Human Health | Pp. 175-183
The Human Health Consequences of Flooding in Europe: a Review
S. Hajat; K. L. Ebi; R. S. Kovats; B. Menne; S. Edwards; A. Haines
Floods are the most common natural disaster in Europe. The adverse human health consequences of flooding are complex and far-reaching: these include drowning, injuries, and an increased incidence of common mental disorders. Anxiety and depression may last for months and possibly even years after the flood event and so the true health burden is rarely appreciated. Effects of floods on communicable diseases appear relatively infrequent in Europe. The vulnerability of a person or group is defined in terms of their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard. Determining vulnerability is a major challenge. Vulnerable groups within communities to the health impacts of flooding are the elderly, disabled, children, women, ethnic minorities, and those on low incomes. There is a need for more good-quality epidemiological data before vulnerability indices can be developed. With better information, the emphasis in disaster management could shift from post-disaster improvisation to pre-disaster planning. A comprehensive, risk-based emergency management program of preparedness, response, and recovery has the potential to reduce the adverse health effects of floods, but there is currently inadequate evidence of the effectiveness of public health interventions
- Flooding: The Impacts on Human Health | Pp. 185-196
Mortality in Flood Disasters
Z. W. Kundzewicz; W. J. Kundzewicz
As stated above, the Classification is designated for the purpose of medical screening and surveillance for the occupational lung diseases. However, the set of classification included in this book will give assistance also in clinical diagnosis of the occupational lung diseases. Wide application of the Classification is expected for further understanding of prevalence, prognosis and complications of the occupational lung diseases.
- Flooding: The Impacts on Human Health | Pp. 197-206
Key Policy Implications of the Health Effects of Floods
Edmund Penning-Rowsell; Sue Tapsell; Theresa Wilson
We investigated the association of weather on daily mortality in Budapest, 1970 – 2000, with special regard to heat waves. Budapest has a continental climate and experiences extreme heat episodes. In the past 30 years, the minimum and maximum daily temperatures in Budapest has significantly increased, as well as daily variability in summer. A 5 °C increase in daily mean temperature above 18 °C increases the risk of total mortality by 10.6 % (95 % CI 9.7, 14.0). The effect of hot weather on cardiovascular mortality is even greater. Six heat episodes were identified from 1993 to 2000 using standardized methods. During each episode, a short term excess in mortality occurred. During the early June heatwave in 2000, excess mortality was greater than 50 % over the three day period. We conclude that temperature, especially heat waves, represent an important environmental burden on mortality in the residents of Budapest. Heat waves that occur early in the summer are particularly dangerous. There is a need to improve public health advice in order to reduce the burden of heat waves on human health in Hungary.
- Flooding: The Impacts on Human Health | Pp. 207-223