Catálogo de publicaciones - libros
Economic Dynamics and Information
Jaroslav Zajac
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-32694-6
ISBN electrónico
978-3-540-32695-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Stability of Markets, Uncertainty, and Strategic Behavior
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 161-175
Market Making, Information, Beliefs, and Chaos
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 176-188
Volatility, Information, and Return Distribution
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 189-204
Shocks, Uncertainty, and Preferences Over Information
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 205-218
Externalities, Market Information and Contracts
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 219-233
Cycles, Chaos, Stabilization and Technological Innovation
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 234-250
Information Cascades, Expectations, and Risky Choices
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 251-266
Conclusion
Jaroslav Zajac
Distributed security models based on a ‘web of trust’ eliminate single points of failure and alleviate performance bottlenecks. However, such distributed approaches rely on the ability to find trust paths between participants, which introduces performance overhead. It is therefore of importance to develop trust path discovery algorithms that minimize such overhead. Since peer-to-peer (P2P) networks share various characteristics with the web of trust, P2P search algorithms can potentially be exploited to find trust paths. In this paper we systematically evaluate the application of P2P search algorithms to the trust path discovery problem. We consider the number of iterations required (as expressed by the TTL parameter) as well as the messaging overhead, for discovery of single as well as multiple trust paths. Since trust path discovery does not allow for resource replication (usual in P2P applications), we observe that trust path discovery is very sensitive to parameter choices in selective forwarding algorithms (such as K-walker), but is relatively fast when the underlying network topology is scale-free.
Pp. 267-267