Catálogo de publicaciones - libros

Compartir en
redes sociales


Microarray Technology and Its Applications

Uwe R. Müller ; Dan V. Nicolau (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-22931-5

ISBN electrónico

978-3-540-26578-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

High Sensitivity Expression Profiling

Ramesh Ramakrishnan; Paul Bao; Uwe R. Müller

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part II - DNA Microarrays | Pp. 229-250

Applications of Matrix-CGH (Array-CGH) for Genomic Research and Clinical Diagnostics

Carsten Schwaenena; Michelle Nesslinga; Bernhard Radlwimmera; Swen Wessendorf; Peter Lichtera

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part II - DNA Microarrays | Pp. 251-263

Analysis of Gene Regulatory Circuits

Zirong Li

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part II - DNA Microarrays | Pp. 265-276

Protein, Antibody and Small Molecule Microarrays

Hendrik Weiner; Jörn Glökler; Claus Hultschig; Konrad Büssow; Gerald Walter

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part III - Protein Microarrays | Pp. 279-295

Photoaptamer Arrays for Proteomics Applications

Drew Smith; Chad Greef

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part III - Protein Microarrays | Pp. 297-308

Biological Membrane Microarrays

Ye Fang; Anthony G. Frutos; Yulong Hong; Joydeep Lahiri

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part III - Protein Microarrays | Pp. 309-320

Use of Reporter Systems for Reverse Transfection Cell Arrays

Brian L. Webb

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part IV - Cell & Tissue Microarrays | Pp. 323-333

Whole Cell Microarrays

Ravi Kapur

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part IV - Cell & Tissue Microarrays | Pp. 335-343

Tissue Microarrays for Miniaturized High-Throughput Molecular Profiling of Tumors

Ronald Simon; Martina Mirlacher; Guido Sauter

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part IV - Cell & Tissue Microarrays | Pp. 345-360

Application of Microarray Technologies for Translational Genomics

Spyro Mousses; Natasha Caplen; Mark Basik; Anne Kallioniemi; Olli Kallioniemi

Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaling systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with Gβγ. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.

Part IV - Cell & Tissue Microarrays | Pp. 361-374