Catálogo de publicaciones - libros

Compartir en
redes sociales


Köhler's Invention

Klaus Eichmann

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Immunology; Biomedicine general

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-7643-7173-9

ISBN electrónico

978-3-7643-7413-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Birkhäuser Verlag 2005

Tabla de contenidos

A short history of the antibody problem

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 3-16

The immunological scene around Köhler

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 17-28

Köhler’s entry into science

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 29-37

The quest for monoclonal antibodies

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 38-48

Cell fusion

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 49-56

Köhler in Cambridge

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 57-78

Back in Basel

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 79-89

The patent disaster

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part I - The time before | Pp. 90-98

The Max-Planck-Institute of Immunobiology

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part II - The time after | Pp. 101-111

Getting Köhler to Freiburg

Klaus Eichmann

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years. However, Pseudo-Boolean solvers are only able to optimize a single linear function while fulfilling several constraints. Unfortunately many real-world optimization problems have multiple objective functions which are often conflicting and have to be optimized simultaneously, resulting in general in a set of optimal solutions. As a consequence, a single-objective Pseudo-Boolean solver will not be able to find this set of optimal solutions. As a remedy, we propose three different algorithms for solving multi-objective Pseudo-Boolean problems. Our experimental results will show the applicability of these algorithms on the basis of several test cases.

Part II - The time after | Pp. 112-120