Catálogo de publicaciones - libros

Compartir en
redes sociales


The Rule of Law

Pietro Costa ; Danilo Zolo (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5744-1

ISBN electrónico

978-1-4020-5745-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Netherlands 2007

Cobertura temática

Tabla de contenidos

Machiavelli, the Republican Tradition, and the Rule of Law

Luca Baccelli

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part III - The Contemporary Debate | Pp. 387-420

Leoni's and Hayek's Critique of the Rule of Law in Continental Europe

Maria Chiara Pievatolo

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part III - The Contemporary Debate | Pp. 421-439

The Rule of Law and the Legal Treatment of Native Americans

Bartolomé Clavero

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part IV - The Rule of Law and Colonialism | Pp. 443-466

The Colonial Model of the Rule of Law in Africa: The Example of Guinea

Carlos Petit

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part IV - The Rule of Law and Colonialism | Pp. 467-512

Is Constitutionalism Compatible with Islam?

Raja Bahlul

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part V - The Rule of Law in Islam | Pp. 515-542

The Rule of Morally Constrained Law: The Case of Contemporary Egypt

Baudouin Dupret

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part V - The Rule of Law in Islam | Pp. 543-561

“Asian Values” and the Rule of Law

Alice Ehr-Soon Tay

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part VI - The Rule of Law and Oriental Cultures | Pp. 565-586

The Rule of Law and Indian Society: From Colonialism to Post-Colonialism

Ananta Kumar Giri

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part VI - The Rule of Law and Oriental Cultures | Pp. 587-614

The Chinese Legal Tradition and the European View of the Rule of Law

Wu Shu-Chen

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part VI - The Rule of Law and Oriental Cultures | Pp. 615-632

Modern Constitutionalism in China

Lin Feng

The rich mechanistic enzymology of the cytochrome P450s has occupied chemists, biochemists, pharmacologists, and toxicologists for over three decades. Are we near to a detailed molecular understanding? We have attempted to convey in this chapter of the recent discoveries that fill many of the lacunas in our understanding of P450-catalyzed substrate oxidations. We now have a precise three-dimensional structure of the ferrous-oxygenated state, and ample spectroscopic characterization of the ferric-peroxo anion and ferric-hydroperoxo intermediates. In the exogenous oxidant driven pathway, an archaeal P450 allowed facile observation of the formation and breakdown of the “Compound I” ferryl-oxo state. Yet much remains. Stabilization and characterization of the “Compound I” state in the dioxygen reaction has not yet been achieved. With the ability to separate, through time and temperature, the population of multiple “active oxygen” intermediates in P4 50 catalysis, it remains to precisely define the reactivity profiles of each state and thereby realize a mapping of observed metabolic profiles to specific states in the reaction cycle. An overriding revelation has been the subtle way in which Nature controls the reactivity of atmospheric dioxygen, electrons, and transition metal through delicate hydrogen-bonding interactions. Thus, in a Periclesian control of mechanism, the cytochromes P450 utilize a variety of proton pathways to finely tune this versatile catalyst for critical physiological processes.

Part VI - The Rule of Law and Oriental Cultures | Pp. 633-646