Catálogo de publicaciones - revistas
Chinese Physics B
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics B covers the latest developments and achievements in all branches of physics. Articles, including papers and rapid communications, are those approved as creative contributions to the whole discipline of physics and of significance to their own fields.Palabras clave – provistas por la editorial
No disponibles.
Historia
Continúa: Chinese Physics
Disponibilidad
| Institución detectada | Período | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1056
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Efficient design of perovskite solar cell using mixed halide and copper oxide
Navneet kour; Rajesh Mehra; Chandni
Palabras clave: General Physics and Astronomy.
Pp. 018801
A compact and high-power silicon-wafer solar strip-cells-array module integrated with an array concentrator
Jie Lin; Mengxia Chen; Yongqi Ke; Caiying Ren; Zesheng Xu; Yaoju Zhang; Chaolong Fang
Palabras clave: General Physics and Astronomy.
Pp. 018802
Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4thin film solar cells
Shoushuai Gao; Zhenwu Jiang; Li Wu; Jianping Ao; Yu Zeng; Yun Sun; Yi Zhang
Palabras clave: General Physics and Astronomy.
Pp. 018803
420 nm thick CH3NH3PbI3−xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells*
Long Li; Cheng-Wu Shi; Xin-Lian Deng; Yan-Qing Wang; Guan-Nan Xiao; Ling-Ling Ni
<jats:p>The rutile TiO<jats:sub>2</jats:sub> nanorod arrays with 240 nm in length, 30 nm in diameter, and <jats:inline-formula> <jats:tex-math><?CDATA $420\,{\rm{\mu }}{{\rm{m}}}^{-2}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>420</mml:mn> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">μ</mml:mi> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_27_1_018804_ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> in areal density were prepared by the hydrothermal method to replace the typical 200–300 nm thick mesoporous TiO<jats:sub>2</jats:sub> thin films in perovskite solar cells. The CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbI<jats:sub>3−<jats:italic>x</jats:italic> </jats:sub>Br<jats:sub> <jats:italic>x</jats:italic> </jats:sub> capping layers with different thicknesses were obtained on the TiO<jats:sub>2</jats:sub> nanorod arrays using different concentration <jats:inline-formula> <jats:tex-math><?CDATA ${\mathrm{PbI}}_{2}\cdot \mathrm{DMSO}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>PbI</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>·</mml:mo> <mml:mi>DMSO</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_27_1_018804_ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> complex precursor solutions in DMF and the photovoltaic performances of the corresponding solar cells were compared. The perovskite solar cells based on 240 nm long TiO<jats:sub>2</jats:sub> nanorod arrays and 420 nm thick CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbI<jats:sub>3−<jats:italic>x</jats:italic> </jats:sub>Br<jats:sub> <jats:italic>x</jats:italic> </jats:sub> capping layers showed the best photoelectric conversion efficiency (PCE) of 15.56% and the average PCE of 14.93±0.63% at the relative humidity of 50%–54% under the illumination of simulated AM 1.5 sunlight (<jats:inline-formula> <jats:tex-math><?CDATA $100\,\mathrm{mW}\cdot {\mathrm{cm}}^{-2}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>100</mml:mn> <mml:mspace width="0.25em" /> <mml:mi>mW</mml:mi> <mml:mo>·</mml:mo> <mml:msup> <mml:mrow> <mml:mi>cm</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpb_27_1_018804_ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>).</jats:p>
Palabras clave: General Physics and Astronomy.
Pp. 018804
Promise of commercialization: Carbon materials for low-cost perovskite solar cells
Yu Cai; Lusheng Liang; Peng Gao
Palabras clave: General Physics and Astronomy.
Pp. 018805
Theoretical study on the kesterite solar cells based on Cu 2 ZnSn(S,Se) 4 and related photovoltaic semiconductors
Dingrong Liu; Dan Han; Menglin Huang; Xian Zhang; Tao Zhang; Chenmin Dai; Shiyou Chen
Palabras clave: General Physics and Astronomy.
Pp. 018806
Key parameters of two typical intercalation reactions to prepare hybrid inorganic–organic perovskite films
Biao Shi; Sheng Guo; Changchun Wei; Baozhang Li; Yi Ding; Yuelong Li; Qing Wan; Ying Zhao; Xiaodan Zhang
Palabras clave: General Physics and Astronomy.
Pp. 018807
Recent progress of colloidal quantum dot based solar cells
Huiyun Wei; Dongmei Li; Xinhe Zheng; Qingbo Meng
Palabras clave: General Physics and Astronomy.
Pp. 018808
Precisely tuning Ge substitution for efficient solution-processed Cu 2 ZnSn(S, Se) 4 solar cells
Xinshou Wang; Dongxing Kou; Wenhui Zhou; Zhengji Zhou; Qingwen Tian; Yuena Meng; Sixin Wu
Palabras clave: General Physics and Astronomy.
Pp. 018809
TiO 2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO 2 nanopart
Jiaqi Tian; Hongcui Li; Haiyue Wang; Bo Zheng; Yebin Xue; Xizhe Liu
Palabras clave: General Physics and Astronomy.
Pp. 018810