Catálogo de publicaciones - libros

Compartir en
redes sociales


Economists' Mathematical Manual

Knut Sydsæter Arne Strøm Peter Berck

4.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-26088-2

ISBN electrónico

978-3-540-28518-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Cobertura temática

Tabla de contenidos

Non-cooperative game theory

Knut Sydsæter; Arne Strøm; Peter Berck

An in (or ) form. If all the strategy sets have a finite number of elements, the game is called . Definition of a pure strategy Nash equilibrium for an -person game. Sufficient conditions for the existence of a pure strategy Nash equilibrium. (There will usually be several Nash equilibria.)

Pp. 187-190

Combinatorics

Knut Sydsæter; Arne Strøm; Peter Berck

The , special cases. The . . (If 16 = 5·3+1 socks are distributed among 3 drawers, then at least one drawer must contain at least 6 socks.)

Pp. 191-192

Probability and statistics

Knut Sydsæter; Arne Strøm; Peter Berck

is the discrete/continuous probability density function for the random (or stochastic) variable . is the cumulative discrete/continuous distribution function. In the continuous case, ( = ) = 0. Expectation of a random variable with discrete/continuous probability density function . = [] is called the . Expectation of a function of a random variable with discrete/continuous probability density function .

Pp. 193-200

Probability distributions

Knut Sydsæter; Arne Strøm; Peter Berck

(For moment generating and characteristic functions, see the more general multivariate normal distribution in (34.15).) with degrees of freedom. Γ is the gamma function defined in (9.53).

Pp. 201-205

Method of least squares

Knut Sydsæter; Arne Strøm; Peter Berck

The method of least squares with explanatory variables. is often called the . Definition of the coefficient of determination and the multiple correlation coefficient. 100 is percentage of explained variation in .

Pp. 207-209