Catálogo de publicaciones - libros
Random Fields and Geometry
Robert J. Adler Jonathan E. Taylor
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-48112-8
ISBN electrónico
978-0-387-48116-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer New York 2007
Cobertura temática
Tabla de contenidos
Random Fields on Euclidean Spaces
Robert J. Adler; Jonathan E. Taylor
The main result of this chapter is Theorem 11.7.2 and its corollaries, which give explicit formulas for the mean Euler characteristic of the excursion sets of smooth Gaussian fields over rectangles in ℝ.
Part III - The Geometry of Random Fields | Pp. 263-299
Random Fields on Manifolds
Robert J. Adler; Jonathan E. Taylor
In essence, this chapter will repeat, for random fields on manifolds, what we have already achieved in the Euclidean setting.
Part III - The Geometry of Random Fields | Pp. 301-330
Mean Intrinsic Volumes
Robert J. Adler; Jonathan E. Taylor
In the preceding two chapters we devoted a considerable amount of energy to computing the mean Euler characteristics of the excursion sets of smooth Gaussian fields. However, we know from both Chapters 6 and 7 that the Euler characteristic is but one of the family of geometric quantifiers known as the Lipschitz–Killing curvatures.
Part III - The Geometry of Random Fields | Pp. 331-348
Excursion Probabilities for Smooth Fields
Robert J. Adler; Jonathan E. Taylor
As we have mentioned more than once before, one of the oldest and most important problems in the study of stochastic processes of any kind is to evaluate the where is a random process over some parameter set . As usual, we shall restrict ourselves to the case in which is centered and Gaussian and is compact for the canonical metric of (1.3.1).
Part III - The Geometry of Random Fields | Pp. 349-386
Non-Gaussian Geometry
Robert J. Adler; Jonathan E. Taylor
This final chapter is, for two reasons, somewhat of an outlier as far as this book is concerned.
Part III - The Geometry of Random Fields | Pp. 387-433