Catálogo de publicaciones - libros

Compartir en
redes sociales


Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course

Daniel R. Lynch

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-23619-3

ISBN electrónico

978-0-387-23620-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Cobertura temática

Tabla de contenidos

Vector Problems

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part II - The Finite Element Method | Pp. 197-217

Numerical Analysis

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part II - The Finite Element Method | Pp. 219-261

Inverse Noise, SVD, and Linear Least Squares

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part III - Inverse Methods | Pp. 265-283

Fitting Models to Data

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part III - Inverse Methods | Pp. 285-303

Dynamic Inversion

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part III - Inverse Methods | Pp. 305-328

Time Conventions for Real-Time Assimilation

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part III - Inverse Methods | Pp. 329-334

Skill Assessment for Data Assimilative Models

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part III - Inverse Methods | Pp. 335-340

Statistical Interpolation

Daniel R. Lynch

PNNL’s Agriculture and Land Use is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-yr time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agricultural productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.

Part III - Inverse Methods | Pp. 341-359