Catálogo de publicaciones - libros
Geostatistics for Environmental Applications: Proceedings of the Fifth European Conference on Geostatistics for Environmental Applications
Philippe Renard Hélène Demougeot-Renard Roland Froidevaux
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-26533-7
ISBN electrónico
978-3-540-26535-1
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
Using a Markov-type model to combine trawl and acoustic data in fish surveys
M. Bouleau; N. Bez
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 111-123
Mapping unobserved factors on vine plant mortality
N. Desassis; P. Monestiez; J. N. Bacro; P. Lagacherie; J. M. Robez-Masson
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 125-136
Analysis and modelling of spatially and temporally varying phenological phases
D. Doktor; F.W. Badeck; F. Hattermann; J. Schaber; M. McAllister
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 137-148
Detection of spatial clusters and outliers in cancer rates using geostatistical filters and spatial neutral models
P. Goovaerts
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 149-160
Geostatistical assessment of long term human exposure to air pollution
N. Jeannée; V. Nedellec; S. Bouallala; J. Deraisme; H. Desqueyroux
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 161-172
Air quality models resulting from multi-source emissions
A. Russo; C. Nunes; A. Bio
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 173-183
Variogram estimation with noisy data in the space-time domain: application to air quality modelling
C. Nunes; A. Soares
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 185-196
Multiple-point geostatistics: a powerful tool to improve groundwater flow and transport predictions in multi-modal formations
L. Feyen; J. Caers
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 197-208
Simulation of radionuclide mass fluxes in a heterogeneous clay formation locally disturbed by excavation
M. Huysmans; A. Berckmans; A. Dassargues
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 209-220
Modeling density-dependent flow using hydraulic conductivity distributions obtained by means of non-stationary indicator simulation
K.-J. Röhlig; H. Fischer; B. Pöltl
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 221-232