Catálogo de publicaciones - libros

Compartir en
redes sociales


Integrated Water Resources Management and Security in the Middle East

Clive Lipchin ; Eric Pallant ; Danielle Saranga ; Allyson Amster (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Environmental Management; Water Policy/Water Governance/Water Management; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Popular Science in Nature and Environment; Environmental Economics; Economic Geography

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5984-1

ISBN electrónico

978-1-4020-5986-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2007

Tabla de contenidos

Retelling the Story of Water in the Middle East: Reflections on and about a Conversation at the Dead Sea

Stuart Schoenfeld; Eric Abitbol; Francesca de Châtel

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

- Retelling the Story of Water in the Middle East: Reflections on and about a Conversation at the Dead Sea | Pp. 1-29

Fresh Water in the Middle East and North Africa

David B. Brooks

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section I - Water Resources in the Middle East | Pp. 33-64

Water Development for Israel: Challenges and Opportunities

Sinaia Netanyahu

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section I - Water Resources in the Middle East | Pp. 65-72

Water and Security in Jordan

Samer A. Talozi

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section I - Water Resources in the Middle East | Pp. 73-98

Water and Security for Palestine

Alice Gray; Jane Hilal

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section I - Water Resources in the Middle East | Pp. 99-117

Environment and Security in the Middle East: Conceptualizing Environmental, Human, Water, Food, Health and Gender Security

Hans Günter Brauch

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section II - Policy and Management Options | Pp. 121-161

Hydro-Diplomacy: Opportunities for Learning from an Interregional Process

Úrsula Oswald Spring

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section II - Policy and Management Options | Pp. 163-200

Perspectives on Alternative Water Sources in Europe and the Middle East

Paul Jeffrey

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section II - Policy and Management Options | Pp. 201-211

International Water Law and Implications for Cooperative Israeli-Palestinian Transboundary Water Management

Alon Tal

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section II - Policy and Management Options | Pp. 213-236

Engendering Water in the Middle East: Some Preliminary Thoughts

Eva M. Rathgeber; Pnina Motzafi-Haller

The Earth’s climate has traditionally been studied by statistical analysis of observations of particular weather elements such as temperature, wind and rainfall. Climatological information, usually expressed as long-term averages and variability, is then presented over a geographical area or at a single location and time series of these quantities or of the observations themselves are examined for evidence of warming, more-frequent severe storms, and so on.

A powerful new approach to climate analysis has emerged in recent years. It applies the tools and techniques of modern everyday weather forecasting in a process called reanalysis. The products, reanalyses, have applicability far beyond that of traditional climate information. Reanalyses have become established as an important and widely utilized resource for the study of atmospheric and oceanic processes and predictability also over the data sparse polar regions. They are used in a range of applications that require a comprehensive record of the state of either the atmosphere or its underlying land and ocean surfaces. The reanalysis products, unlike their operational counterparts, do not suffer from inhomogeneities introduced by changes in the data assimilation system. Thus they are in principle better suited for use in studies of low frequency variability and climate trends that complement studies of climate change based on individual instrumental records and climate-model simulations.

Climate quality requirements can be met by reanalyses for the decades with good upper-air data coverage by satellites or at least radiosonde data. The possibility of extending reanalyses to cover earlier periods when only surface observations are available in reasonable numbers (e.g., from the 1850s to the 1930s) is nevertheless of interest, and has been explored in pilot studies comparing analyses with good coverage of satellite and other upper-air data with analyses using only surface-pressure observations.

Section II - Policy and Management Options | Pp. 237-250