Catálogo de publicaciones - libros
Evaluating Feynman Integrals
Vladimir A. Smirnov
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-23933-8
ISBN electrónico
978-3-540-44703-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
Table of MB Integrals
Vladimir A. Smirnov
This is the first Barnes lemma:
Pp. 207-219
Analysis of Convergence and Sector Decompositions
Vladimir A. Smirnov
In this appendix, the analysis of convergence of Feynman integrals based on the alpha representation is briefly described. The UV divergences come from the region of small values of the α-parameters in (2.36), while the off-shell IR divergences arise from the integration over large –. To reveal these divergences, the integration region is divided into so-called ‘sectors’, where new integration variables are introduced, with the goal to obtain a factorization of the integrand. Then the analysis of convergence reduces to power counting in one-dimensional integrals.
Pp. 221-232
A Brief Review of Some Other Methods
Vladimir A. Smirnov
In this appendix, some methods which were not considered in Chaps. 3–7 are briefly reviewed. The method based on dispersion relations was successfully used from the early days of quantum field theory. The Gegenbauer Polynomial -Space Technique [13], the method of gluing [15] and the method based on star-triangle uniqueness relations [16, 23, 36] are methods for evaluating massless diagrams. The method of IR rearrangement [38], also in a generalized version based on the -operation [14, 34], is a method oriented at renormalization-group calculations.
Pp. 233-244