Catálogo de publicaciones - libros

Compartir en
redes sociales


Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra

Matthias Beck Sinai Robins

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Combinatorics; Geometry; Discrete Mathematics; Number Theory; Convex and Discrete Geometry; Computational Science and Engineering

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-29139-0

ISBN electrónico

978-0-387-46112-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, LLC 2007

Cobertura temática

Tabla de contenidos

Solid Angles

Matthias Beck; Sinai Robins

The natural generalization of a two-dimensional angle to higher dimensions is called a . Given a pointed cone к ⊂ ℝ, the solid angle at its apex is the proportion of space that the cone к occupies. In slightly different words, if we pick a point х ∊ ℝ “at random,” then the probability that х ∊ к is precisely the solid angle at the apex of к. Yet another view of solid angles is that they are in fact volumes of spherical polytopes: the region of intersection of a cone with a sphere. There is a theory here that parallels the Ehrhart theory of Chapters 3 and 4, but which has some genuinely new ideas.

2 - Beyond the Basics | Pp. 179-190

A Discrete Version of Green’s Theorem Using Elliptic Functions

Matthias Beck; Sinai Robins

We now allow ourselves the luxury of using basic complex analysis. In particular, we assume that the reader is familiar with contour integration and the residue theorem. We may view the residue theorem as yet another result that intimately connects the continuous and the discrete: it transforms a continuous integral into a discrete sum of residues.

2 - Beyond the Basics | Pp. 191-197