Catálogo de publicaciones - libros
Income Elasticity and Economic Development: Methods and Applications
M. Ohidul Haque
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Development Economics; Econometrics; Macroeconomics/Monetary Economics//Financial Economics; Statistics for Business/Economics/Mathematical Finance/Insurance; Economic Growth; Economic Policy
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-24292-7
ISBN electrónico
978-0-387-24344-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer 2005
Cobertura temática
Tabla de contenidos
Demand for Alcohol in Australia
M. Ohidul Haque
Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.
Pp. 173-188
Consumers’ Equivalence Scales: A Review
M. Ohidul Haque
Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.
Pp. 189-219
Conclusions
M. Ohidul Haque
Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.
Pp. 221-225