Catálogo de publicaciones - libros

Compartir en
redes sociales


Value Driven Product Planning and Systems Engineering

H. E. Cook L. A. Wissmann

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-84628-964-4

ISBN electrónico

978-1-84628-965-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2007

Cobertura temática

Tabla de contenidos

Value of Interior Noise in a Luxury Automobile

H. E. Cook; L. A. Wissmann

Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.

Pp. 119-126

Quantifying the Trade-off between Acceleration Performance and Fuel Economy

H. E. Cook; L. A. Wissmann

Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.

Pp. 127-132

Value of Mustang Options

H. E. Cook; L. A. Wissmann

Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.

Pp. 133-139

Simulated Survey of Choice between Auto and Transit Bus Modes

H. E. Cook; L. A. Wissmann

Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.

Pp. 141-147

Assessing Relative Brand Value

H. E. Cook; L. A. Wissmann

Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.

Pp. 149-152

Value and Cost Benchmarking a Yogurt Market

H. E. Cook; L. A. Wissmann

Using a very recent approach based on the Charnes-Cooper trasformation we characterize the pseudoconvexity of the sum between a quadratic fractional function and a linear one. Furthemore we prove that the ratio between a quadratic fractional function and the cube of an affine one is pseudoconvex if and only if the product between a quadratic fractional function and an affine one is pseudoconvex and we provide a sort of canonical form for this latter class of functions. Benefiting by the new results we are able to characterize the pseudoconvexity of the ratio between a quadratic fractional function and the cube of an affine one.

Pp. 153-157