Catálogo de publicaciones - libros

Compartir en
redes sociales


Título de Acceso Abierto

Perspectives on European Earthquake Engineering and Seismology: Perspectives on European Earthquake Engineering and Seismology

1st ed. 2015. 455p.

Parte de: Geotechnical, Geological and Earthquake Engineering

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Geotechnical Engineering & Applied Earth Sciences

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2015 Directory of Open access Books acceso abierto
No requiere 2015 SpringerLink acceso abierto

Información

Tipo de recurso:

libros

ISBN impreso

978-3-319-16963-7

ISBN electrónico

978-3-319-16964-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Seismic Performance of Historical Masonry Structures Through Pushover and Nonlinear Dynamic Analyses

Sergio Lagomarsino; Serena Cattari

Earthquakes are the main cause of damage for ancient masonry buildings. In order to reduce their vulnerability with compatible and light interventions, it is necessary to have accurate models for the seismic analysis, able to simulate the nonlinear behaviour of masonry, and well defined Performance-Based Assessment (PBA) procedure, aimed to guarantee acceptable levels of risk for the use of the building, the safety of occupants and the conservation of the monument itself. Displacement-based approach is the more appropriate for this type of structures, which cracks even for low intensity earthquakes and can survive to severe ones only if they have a sufficient displacement capacity. Among the wide variety of historical masonry structures, buildings characterized by a box-type behavior are here considered, which can be modeled through the equivalent frame model, considering the assembling of nonlinear piers and spandrels. Thus, the main object of the paper is to establish a strict equivalence between the use of static pushover and incremental dynamic analyses for the PBA. Pros and cons of the two methods are discussed, as well as some critical issues related to their application. A multiscale approach is proposed for the definition of the performance levels, which considers the seismic response at different scales: local damage in single elements, performance of single walls and horizontal diaphragms and global behavior. An original contribution is the use of Proper Orthogonal Decomposition (POD) technique for the correct interpretation of numerical and experimental dynamic results.

Pp. 265-292

Developments in Ground Motion Predictive Models and Accelerometric Data Archiving in the Broader European Region

Sinan Akkar; Özkan Kale

This paper summarizes the evolution of major strong-motion databases and ground-motion prediction equations (GMPEs) for shallow active crustal regions (SACRs) in Europe and surrounding regions. It concludes with some case studies to show the sensitivity of hazard results at different seismicity levels and exceedance rates for local (developed from country-specific databases) and global (based on databases of multiple countries) GMPEs of the same region. The case studies are enriched by considering other global GMPEs of SACRs that are recently developed in the USA. The hazard estimates computed from local and global GMPEs from the broader Europe as well as those obtained from global GMPEs developed in the US differ. These differences are generally significant and their variation depends on the annual exceedance rate and seismicity. Current efforts to improve the accelerometric data archives in the broader Europe as well as more refined GMPEs that will be developed from these databases would help the researchers to understand the above mentioned differences in seismic hazard.

Pp. 293-320

Towards the “Ultimate Earthquake-Proof” Building: Development of an Integrated Low-Damage System

Stefano Pampanin

The 2010–2011 Canterbury earthquake sequence has highlighted the severe mismatch between societal expectations over the reality of seismic performance of modern buildings. A paradigm shift in performance-based design criteria and objectives towards damage-control or low-damage design philosophy and technologies is urgently required. The increased awareness by the general public, tenants, building owners, territorial authorities as well as (re)insurers, of the severe socio-economic impacts of moderate-strong earthquakes in terms of damage/dollars/downtime, has indeed stimulated and facilitated the wider acceptance and implementation of cost-efficient damage-control (or low-damage) technologies.

The ‘bar’ has been raised significantly with the request to fast-track the development of what the wider general public would hope, and somehow expect, to live in, i.e. an “earthquake-proof” building system, capable of sustaining the shaking of a severe earthquake basically unscathed.

The paper provides an overview of recent advances through extensive research, carried out at the University of Canterbury in the past decade towards the development of a low-damage building system as a whole, within an integrated performance-based framework, including the skeleton of the superstructure, the non-structural components and the interaction with the soil/foundation system.

Examples of real on site-applications of such technology in New Zealand, using concrete, timber (engineered wood), steel or a combination of these materials, and featuring some of the latest innovative technical solutions developed in the laboratory are presented as examples of successful transfer of performance-based seismic design approach and advanced technology from theory to practice.

Pp. 321-358

Archive of Historical Earthquake Data for the European-Mediterranean Area

Andrea Rovida; Mario Locati

The importance of historical earthquake data is largely recognized by both seismologists and engineers, who use such data in a wide range of applications.

At the European-Mediterranean scale, several databases dealing with historical earthquake data – mostly intensity data points – exist and are constantly maintained and updated, as well as national earthquake catalogues. In addition, a number of studies on historical earthquakes are published every year. Most of these activities are being performed at a national scale, depending on each country’s needs, and according to diverse methodologies. As a result, the earthquake history of Europe is today fragmented in a puzzle of different, only partially overlapping sets of data, which, at the continent scale, are not homogeneously collected and interpreted. This situation is particularly evident in the frontier areas, where historical earthquakes are often interpreted in a conflicting and/or partial way by the catalogues of the bordering countries. In addition, the background information upon which several historical catalogues are built is not published or not easily accessible.

In recent years, a major effort was made to bridge over these gaps, by establishing cooperation among existing national databases, and creating new ones according to common standards. Particular attention was devoted to retrieve the earthquake background information, that is, the results of historical earthquake investigation in terms of a paper, a report, a book chapter, a map, etc. As most of the information on an historical earthquake can be summarized in a set of Macroseismic Data Points (MDPs) – i.e. a list of localities (name and coordinates) with a macroseismic intensity assessment and the related macroseismic scale – a dedicated effort was addressed to make such data publicly available.

The described activities resulted in the European Archive of Historical Earthquake Data (AHEAD). The Archive is conceived as a pan-European common and open platform supporting the research activities in the field of historical seismology by (i) tracing back, preserving and granting access to the sources of data on the earthquake history of Europe (papers, reports, MDPs, and catalogues), and (ii) establishing relations among these data. AHEAD inventories multiple sets of information concerning each European earthquake in the time-window 1000–1899. The AHEAD web portal () gives access, as of today, to 4,722 earthquakes and the related background information as provided by 338 data sources. All these data can be queried by earthquake and by study, through a user-friendly web-interface. The distinguishing feature of AHEAD is to grant access not only to one study, but to all the available (published) data sources dealing with each individual earthquake, allowing researchers to take into account the different point of views and interpretations.

Pp. 359-369

A Review and Some New Issues on the Theory of the H/V Technique for Ambient Vibrations

Enrico Lunedei; Peter Malischewsky

In spite of the Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) technique obtained by the ambient vibrations is a very popular tool, a full theoretical explanation of it has been not reached yet. A short is here presented on the theoretical models explaining the H/V spectral ratio that have been development in last decades. It leads to the present two main research lines: one aims at describing the H/V curve by taking in account the whole ambient-vibration wavefield, and another just studies the Rayleigh ellipticity. For the first theoretical branch, a comparison between the most recent two models of the ambient-vibration wavefield is presented, which are the Distributed Surface Sources (DSS) one and the Diffuse Field Approach (DFA). A mention is done of the current developments of these models and of the use of the DSS for comparing the H/V spectral ratio definitions present in literature. For the second research branch, some insights about the connection between the so-called osculation points of the Rayleigh dispersion curves and the behaviour of the H/V curve are discussed.

Pp. 371-394

Macroseismic Intervention Group: The Necessary Field Observation

Christophe Sira

French territory is characterized by moderate seismicity, but statistically a strong earthquake strikes mainland France every century. The French Central Seismological Office (BCSF) is in charge of macroseismic enquiries and intensity estimations for each earthquake that effects French territory.

Having used various forms of inquiry since 1921, the BCSF became aware of the limits and biases of macroseismic forms for the collection of the seismic effects, in particular for the estimation of the intensities larger or equal to VI including the damages of buildings. The field observations bring crucial informations for an accurate estimation of the intensities higher or equal to VI.

The last earthquakes in metropolitan France and West Indies islands have motivated the BCSF to create a large professional group dedicated on collecting macroseismic field observations. This group, called the Macroseismic Intervention Group (GIM), includes several earthquake specialists in various specific domains, such as vulnerability, site effects, historical intensity estimates, etc. It contributes to the European macroseismic scale, in its evolution and its future updates. By employing young specialists in this group we allow the continuity of the macroseismic work while improving the use of the acquired field data.

Pp. 395-408

Bridging the Gap Between Nonlinear Seismology as Reality and Earthquake Engineering

Gheorghe Marmureanu; Carmen Ortanza Cioflan; Alexandru Marmureanu; Constantin Ionescu; Elena Florinela Manea

In seismic hazard evaluation and risk mitigation, there are many random and epistemic uncertainties. On the another hand, the researches in this area as part of knowledge are with rest, that is, the results are with interpretable questions with . The knowledge cannot be exhausted by results. The authors developed in last time the concept of “” (Marmureanu et al. Nonlinear seismology-the seismology of XXI century. In: Modern seismology perspectives, vol 105. Springer, New York, pp 49–70, 2005).

The leading question is: how many cities, villages, metropolitan areas, etc., in seismic regions are constructed on rock? Most of them are located on soil deposits. A soil is of basic type sand or gravel (termed coarse soils), silt or clay (termed fine soils), etc. Strong ground accelerations from large earthquakes can produce a nonlinear response in shallow soils. This can be studied by comparing surface and borehole seismic records for earthquakes of different sizes. When a nonlinear site response is present, then the shaking from large earthquakes cannot be predicted by simple scaling of records from small earthquakes (Shearer, Introduction to seismology, 2nd edn. Cambridge University Press, Cambridge, 2009). (Aki, Tectonophysics 218:93–111, 1993).

The difficulty for seismologists is to demonstrate the nonlinear site effects, these being overshadowed by the overall patterns of shock generation and propagation. In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding/knowledge of , , and site conditions. To see the actual influence of nonlinearity of the (seismic source-path propagation-local geological structure), Soils from the local geological structure at the recording site exhibit a strong nonlinear behavior under cyclic loading conditions and although they have many common mechanical properties, the use of different models to describe their seismic behavior is required.

The studies made by the authors in this chapter show that using real spectral amplification factors (SAF), amplifications showing local effects, have values which differ totally from those of crustal earthquakes. The spectral amplifications highlight strong nonlinear response of soil composed of fractured limestone, limestone with clay, marl, sands, clay, etc., and these amplifications are strongly dependent of earthquake magnitude and nature of soils from site. Finally, these amplifiers are compared to those from Regulatory Guide 1.60 of the U. S. Atomic Energy Commission (Design response spectra for seismic design of nuclear power plants. Regulatory Guide 1.60. Rev. 1, Washington, D.C., 1973) which can be used only for crustal earthquakes and not for deep and strong Vrancea earthquakes from Romania. The study of the nonlinear behavior of soils during strong earthquakes may clarify uncertainties in ground motion prediction equations used by probabilistic and classical deterministic seismic hazard analysis.

Pp. 409-428

The Influence of Earthquake Magnitude on Hazard Related to Induced Seismicity

Benjamin Edwards

An increased focus on seismic hazard related to induced seismicity means that state-of-the-art approaches for earthquake monitoring and hazard estimation associated to tectonic earthquakes are now being applied at smaller and smaller scales. This chapter focuses on a specific issue related to this shift of focus to relatively small earthquakes in close proximity to urban areas. In tectonic earthquake hazard analyses we typically rely on a simple power-law scaling relating earthquake magnitude and recurrence. It is known, however, that for smaller earthquakes, the scaling between different magnitude types is not necessarily linear – meaning that a power law cannot be maintained over all magnitude types. Extrapolation to estimate the recurrence of earthquakes not yet recorded at the study site is therefore non-trivial. For earthquake hazard, the moment magnitude is typically used as input as it is easy to relate to ground motion through empirical equations or simulation approaches. However, for earthquake monitoring, maintaining a complete catalogue including moment magnitude of small events is technically difficult. Instead, a point-measure based magnitude, such as the local magnitude is usually determined. In the following the impact of the non-linear scaling between the magnitude of choice for local monitoring – the local magnitude – and that used for hazard analysis – the moment magnitude – is explored.

Pp. 429-442

On the Origin of Mega-thrust Earthquakes

Kuvvet Atakan

Out of 17 largest earthquakes in the world since 1900 with magnitudes larger than 8.5, 15 of them occurred along convergent plate boundaries as mega-thrust events. Four of these catastrophic earthquakes have occurred during the last decade. The wealth of observational data from these events offer a unique opportunity for Earth Scientists to understand the underlying processes leading to the deformation in subductions zones, not only along the plate interface, but also in plate interiors in both the subducting slab and the overriding plate.

Pp. 443-455