Catálogo de publicaciones - libros

Compartir en
redes sociales


The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike

Peter Borwein ; Stephen Choi ; Brendan Rooney ; Andrea Weirathmueller (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Number Theory; History of Mathematical Sciences

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2008 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-72125-5

ISBN electrónico

978-0-387-72126-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag New York 2008

Cobertura temática

Tabla de contenidos

Expert Witnesses

Peter Borwein; Stephen Choi; Brendan Rooney; Andrea Weirathmueller

This chapter contains four expository papers on the Riemann hypothesis. These are our “expert witnesses”, and they provide the perspective of specialists in the fields of number theory and complex analysis. The first two papers were commissioned by the Clay Mathematics Institute to serve as official prize descriptions. They give a thorough description of the problem, the surrounding theory, and probable avenues of attack. In the third paper, Conrey gives an account of recent approaches to the Riemann hypothesis, highlighting the connection to random matrix theory. The last paper outlines reasons why mathematicians should remain skeptical of the hypothesis, and possible sources of disproof.

Part II - Original Papers | Pp. 93-160

The Experts Speak for Themselves

Peter Borwein; Stephen Choi; Brendan Rooney; Andrea Weirathmueller

This chapter contains several original papers. These give the most essential sampling of the enormous body of material on the Riemann zeta function, the Riemann hypothesis, and related theory. They give a chronology of milestones in the development of the theory contained in the previous chapters. We begin with Chebyshev’s groundbreaking work on π(), continue through Riemann’s proposition of the Riemann hypothesis, and end with an ingenious algorithm for primality testing. These papers place the material in historical context and illustrate the motivations for research on and around the Riemann hypothesis. Most papers are preceded by a short biographical note on the author(s) and all are preceded by a short review of the material they present.

Part II - Original Papers | Pp. 161-482