Catálogo de publicaciones - libros
The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike
Peter Borwein ; Stephen Choi ; Brendan Rooney ; Andrea Weirathmueller (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Number Theory; History of Mathematical Sciences
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2008 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-72125-5
ISBN electrónico
978-0-387-72126-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2008
Información sobre derechos de publicación
© Springer-Verlag New York 2008
Cobertura temática
Tabla de contenidos
Expert Witnesses
Peter Borwein; Stephen Choi; Brendan Rooney; Andrea Weirathmueller
This chapter contains four expository papers on the Riemann hypothesis. These are our “expert witnesses”, and they provide the perspective of specialists in the fields of number theory and complex analysis. The first two papers were commissioned by the Clay Mathematics Institute to serve as official prize descriptions. They give a thorough description of the problem, the surrounding theory, and probable avenues of attack. In the third paper, Conrey gives an account of recent approaches to the Riemann hypothesis, highlighting the connection to random matrix theory. The last paper outlines reasons why mathematicians should remain skeptical of the hypothesis, and possible sources of disproof.
Part II - Original Papers | Pp. 93-160
The Experts Speak for Themselves
Peter Borwein; Stephen Choi; Brendan Rooney; Andrea Weirathmueller
This chapter contains several original papers. These give the most essential sampling of the enormous body of material on the Riemann zeta function, the Riemann hypothesis, and related theory. They give a chronology of milestones in the development of the theory contained in the previous chapters. We begin with Chebyshev’s groundbreaking work on π(), continue through Riemann’s proposition of the Riemann hypothesis, and end with an ingenious algorithm for primality testing. These papers place the material in historical context and illustrate the motivations for research on and around the Riemann hypothesis. Most papers are preceded by a short biographical note on the author(s) and all are preceded by a short review of the material they present.
Part II - Original Papers | Pp. 161-482