Catálogo de publicaciones - libros
Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings
Michel L. Lapidus Machiel van Frankenhuijsen
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Topology; Number Theory; Measure and Integration; Partial Differential Equations; Dynamical Systems and Ergodic Theory; Global Analysis and Analysis on Manifolds
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-33285-7
ISBN electrónico
978-0-387-35208-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Science+Business Media, LLC 2006
Cobertura temática
Tabla de contenidos
Generalized Cantor Strings and their Oscillations
Michel L. Lapidus; Machiel van Frankenhuijsen
In this chapter, we analyze the oscillations in the geometry and the spectrum of the simplest type of generalized self-similar fractal strings. The complex dimensions of these generalized Cantor strings form a vertical arithmetic sequence + ( ∈ ℤ). We construct such a generalized Cantor string for any real-valued choice of and positive . We also construct for each positive integer ⋀ the so-called truncated Cantor strings, which have a finite arithmetic progression + of complex dimensions, where is restricted by Λ < < Λ.
Pp. 279-291
The Critical Zeros of Zeta Functions
Michel L. Lapidus; Machiel van Frankenhuijsen
As we saw in Chapter 10, the complex dimensions of a generalized Cantor string form an arithmetic progression + , with 0 < < 1 and > 0. In this chapter, we use this fact to study arithmetic progressions of critical zeros of zeta functions.
Pp. 293-324
Concluding Comments, Open Problems, and Perspectives
Michel L. Lapidus; Machiel van Frankenhuijsen
In this chapter, we make several suggestions for the direction of future research related to, and naturally extending in various ways, the theory developed in this book. In several places, we also provide some additional background material that may be helpful to the reader.
Pp. 325-386