Catálogo de publicaciones - libros

Compartir en
redes sociales


The Linear Algebra a Beginning Graduate Student Ought to Know

Jonathan S. Golan

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5494-5

ISBN electrónico

978-1-4020-5495-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2007

Cobertura temática

Tabla de contenidos

Determinants

Jonathan S. Golan

Let F be a field and let n be a positive integer. We would like to find a function from M _nxn( F ) to F which will serve as an oracle of singularity, namely a function that will assign a value of 0 to singular matrices and a value other than 0 to nonsingular matrices.

Palabras clave: Positive Integer; Nonsingular Matrix; Elementary Matrice; Determinant Function; Block Form.

Pp. 199-228

Eigenvalues and eigenvectors

Jonathan S. Golan

One of the central problems in linear algebra is this: given a vector space V finitely generated over a field F , and given an endomorphism a of V , is there a way to select a basis B of V so that the matrix Φ_BB(α) is as nice as possible? In this chapter we will begin by defining some basic notions which will help us address this problem.

Palabras clave: Positive Integer; Vector Space; Diagonal Matrix; Characteristic Polynomial; Canonical Basis.

Pp. 229-266

Krylov subspaces

Jonathan S. Golan

Let V be a vector space over a field F and let α ∈ End(V) .

Palabras clave: Vector Space; Characteristic Polynomial; Canonical Basis; Krylov Subspace; Minimal Polynomial.

Pp. 267-284

The dual space

Jonathan S. Golan

Let V be a vector space over a field F . A linear transformation from V to F (considered as a vector space over itself) is a linear functional on V .

Pp. 285-298

Inner product spaces

Jonathan S. Golan

In this chapter, we will have to restrict the set of fields over which we work.

Pp. 299-324

Orthogonality

Jonathan S. Golan

Let V be an inner product space and let 0_V ≠ v,w ∈ V . From Proposition 15.2 we see that

Pp. 325-348

Selfadjoint Endomorphisms

Jonathan S. Golan

Let V be an inner product space. An endomorphism α of V is selfadjoint if and only if 〈(v),α,w〉 = 〈v,α(w)〉 for all v,w ∈ V .

Palabras clave: Linear Transformation; Symmetric Matrix; Positive Real Number; Product Space; Symmetric Matrice.

Pp. 349-368

Unitary and Normal endomorphisms

Jonathan S. Golan

Let V be an inner product space. An automorphism of V which is an isometry is called a unitary automorphism .

Pp. 369-388

Moore-Penrose pseudoinverses

Jonathan S. Golan

Let V and W be inner product spaces, and let α : V → W be a linear transformation.

Palabras clave: Positive Integer; Linear Transformation; Identity Function; Product Space; Canonical Base.

Pp. 389-398

Bilinear transformations and forms

Jonathan S. Golan

Let V, W , and Y be vector spaces over a field F . We say that a function f : V × W → Y is a bilinear transformation if and only if the function.

Palabras clave: Positive Integer; Vector Space; Quadratic Form; Tensor Product; Linear Transformation.

Pp. 399-422