Catálogo de publicaciones - libros
The Linear Algebra a Beginning Graduate Student Ought to Know
Jonathan S. Golan
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-5494-5
ISBN electrónico
978-1-4020-5495-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer 2007
Cobertura temática
Tabla de contenidos
Determinants
Jonathan S. Golan
Let F be a field and let n be a positive integer. We would like to find a function from M _nxn( F ) to F which will serve as an oracle of singularity, namely a function that will assign a value of 0 to singular matrices and a value other than 0 to nonsingular matrices.
Palabras clave: Positive Integer; Nonsingular Matrix; Elementary Matrice; Determinant Function; Block Form.
Pp. 199-228
Eigenvalues and eigenvectors
Jonathan S. Golan
One of the central problems in linear algebra is this: given a vector space V finitely generated over a field F , and given an endomorphism a of V , is there a way to select a basis B of V so that the matrix Φ_BB(α) is as nice as possible? In this chapter we will begin by defining some basic notions which will help us address this problem.
Palabras clave: Positive Integer; Vector Space; Diagonal Matrix; Characteristic Polynomial; Canonical Basis.
Pp. 229-266
Krylov subspaces
Jonathan S. Golan
Let V be a vector space over a field F and let α ∈ End(V) .
Palabras clave: Vector Space; Characteristic Polynomial; Canonical Basis; Krylov Subspace; Minimal Polynomial.
Pp. 267-284
The dual space
Jonathan S. Golan
Let V be a vector space over a field F . A linear transformation from V to F (considered as a vector space over itself) is a linear functional on V .
Pp. 285-298
Inner product spaces
Jonathan S. Golan
In this chapter, we will have to restrict the set of fields over which we work.
Pp. 299-324
Orthogonality
Jonathan S. Golan
Let V be an inner product space and let 0_V ≠ v,w ∈ V . From Proposition 15.2 we see that
Pp. 325-348
Selfadjoint Endomorphisms
Jonathan S. Golan
Let V be an inner product space. An endomorphism α of V is selfadjoint if and only if 〈(v),α,w〉 = 〈v,α(w)〉 for all v,w ∈ V .
Palabras clave: Linear Transformation; Symmetric Matrix; Positive Real Number; Product Space; Symmetric Matrice.
Pp. 349-368
Unitary and Normal endomorphisms
Jonathan S. Golan
Let V be an inner product space. An automorphism of V which is an isometry is called a unitary automorphism .
Pp. 369-388
Moore-Penrose pseudoinverses
Jonathan S. Golan
Let V and W be inner product spaces, and let α : V → W be a linear transformation.
Palabras clave: Positive Integer; Linear Transformation; Identity Function; Product Space; Canonical Base.
Pp. 389-398
Bilinear transformations and forms
Jonathan S. Golan
Let V, W , and Y be vector spaces over a field F . We say that a function f : V × W → Y is a bilinear transformation if and only if the function.
Palabras clave: Positive Integer; Vector Space; Quadratic Form; Tensor Product; Linear Transformation.
Pp. 399-422