Catálogo de publicaciones - revistas

Compartir en
redes sociales


Physical Review Applied

Resumen/Descripción – provisto por la editorial en inglés
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jun. 2014 / hasta dic. 2023 Physical Review Journals (APS)

Información

Tipo de recurso:

revistas

ISSN electrónico

2331-7019

Editor responsable

American Physical Society (APS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Inertial geometric quantum logic gates

D. Turyansky; O. Ovdat; R. Dann; Z. Aqua; R. Kosloff; B. Dayan; A. PickORCID

Pp. No disponible

Topological phase transition of photonic Chern insulators by multi-Mie-resonance inversion

Hui Huang; Junzheng Hu; Xiaofei Ye; Shiqi Li; Haotian Li; Yao Jiang; Minghui Lu; Peng Zhan

Pp. No disponible

Reconfigurable manipulation of perovskite nanoparticles with a cusp-catastrophe Bessel beam

Haixia WuORCID; Liu Tan; Hui Huang; Xiaofang Lu; Huanpeng Liang; Tao Lin; Bingsuo Zou; Peilong Hong; Yu-Xuan RenORCID; Yi LiangORCID

Pp. No disponible

Strain effects on the magnon-magnon interaction and magnon relaxation time in ferromagnetic CrGeTe
Ke WangORCID; Kai RenORCID; Yinlong Hou; Dan Yang; Gang Zhang

Pp. No disponible

Harnessing thermal waves for heat pumping

Jose Ordonez-MirandaORCID; Roman AnufrievORCID; Masahiro NomuraORCID; Sebastian VolzORCID

Pp. No disponible

Influence of chemical strains on the electrocaloric response, polarization morphology, tetragonality, and negative-capacitance effect of ferroelectric core-shell nanorods and nanowires

Anna N. MorozovskaORCID; Eugene A. EliseevORCID; Olha A. KovalenkoORCID; Dean R. EvansORCID

<jats:p>Using Landau-Ginzburg-Devonshire (LGD) approach, we proposed the analytical description of the influence of chemical strains on spontaneous polarization and the electrocaloric response in ferroelectric core-shell nanorods. We postulate that the nanorod core presents a defect-free single-crystalline ferroelectric material, and elastic defects are accumulated in the ultrathin shell, where they can induce tensile or compressive chemical strains. Finite-element modeling (FEM) based on the LGD approach reveals transitions of domain-structure morphology induced by chemical strains in the <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><a:msub><a:mrow><a:mi>Ba</a:mi><a:mi>Ti</a:mi><a:mi mathvariant="normal">O</a:mi></a:mrow><a:mn>3</a:mn></a:msub></a:math> nanorods. Namely, tensile chemical strains induce and support the single-domain state in the central part of the nanorod, while the curled domain structures appear near the unscreened or partially screened ends of the rod. The vortexlike domains propagate toward the central part of the rod and fill it entirely, when the rod is covered by a shell with compressive chemical strains above some critical value. The critical value depends on the nanorod sizes, aspect ratio, and screening conditions at its ends. Both analytical theory and FEM predict that the tensile chemical strains in the shell increase the nanorod polarization, lattice tetragonality, and electrocaloric response well above the values corresponding to the bulk material. The physical reason for the increase is strong electrostriction coupling between the mismatch-type elastic strains induced in the core by chemical strains in the shell. Comparison with earlier XRD data confirmed an increase of the tetragonality ratio in tensile <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><e:msub><e:mrow><e:mi>Ba</e:mi><e:mi>Ti</e:mi><e:mi mathvariant="normal">O</e:mi></e:mrow><e:mn>3</e:mn></e:msub></e:math> nanorods compared to the bulk material. Obtained analytical expressions, which are suitable for the description of strain-induced changes in a wide range of multiaxial ferroelectric core-shell nanorods and nanowires, can be useful for strain engineering of advanced ferroelectric nanomaterials for energy storage, harvesting, electrocaloric applications, and negative capacitance elements.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>

Pp. No disponible

Editorial: Coauthor! Coauthor!

Randall D. Kamien; Daniel Ucko

Pp. No disponible

Direct readout of a nitrogen-vacancy hybrid-spin quantum register in diamond by analysis of photon arrival time

Jingyan HeORCID; Yu Tian; Zhiyi HuORCID; Runchuan YeORCID; Xiangyu Wang; Dawei Lu; Nanyang XuORCID

Pp. No disponible

Harnessing the superconducting diode effect through inhomogeneous magnetic fields

Leonardo Rodrigues CadorimORCID; Edson SardellaORCID; Clécio C. de Souza SilvaORCID

Pp. No disponible

Solution to the cocktail party problem: A time-reversal active metasurface for multipoint focusing

Constant BourdelouxORCID; Mathias FinkORCID; Fabrice LemoultORCID

<jats:p>The cocktail party effect is the capability to focus one’s auditory attention on particular audio sources while ignoring other audio sources. We propose an experimental strategy to reproduce this ability by designing a time-dependent metasurface composed of independent active mirrors. Each active mirror is a programmable acoustic unit cell capable of hearing, computing, and re-emitting acoustic signals: each of them acts as a convolution filter. The proper configuration of the metasurface temporal filters allows one to establish an acoustic communication link between groups of individuals immersed in the noisy environment: a multiple-user multiple-input, multiple-output acoustic system is built.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>

Pp. No disponible