Catálogo de publicaciones - revistas

Compartir en
redes sociales


Biomedical Physics & Engineering Express

Resumen/Descripción – provisto por la editorial en inglés
A broad, inclusive, rapid review journal devoted to publishing new research in all areas of biomedical engineering, biophysics and medical physics, with a special emphasis on interdisciplinary work between these fields.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jun. 2015 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN electrónico

2057-1976

Editor responsable

IOP Publishing (IOP)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Liver lesion localisation and classification with convolutional neural networks: a comparison between conventional and spectral computed tomography

Nadav ShapiraORCID; Julia Fokuhl; Manuel Schultheiß; Stefanie Beck; Felix K KoppORCID; Daniela Pfeiffer; Julia Dangelmaier; Gregor PahnORCID; Andreas P Sauter; Bernhard Renger; Alexander A FingerleORCID; Ernst J Rummeny; Shadi Albarqouni; Nassir Navab; Peter B Noël

<jats:title>Abstract</jats:title> <jats:p> <jats:italic>Purpose</jats:italic>: To evaluate the benefit of the additional available information present in spectral CT datasets, as compared to conventional CT datasets, when utilizing convolutional neural networks for fully automatic localisation and classification of liver lesions in CT images. <jats:italic>Materials and Methods</jats:italic>: Conventional and spectral CT images (iodine maps, virtual monochromatic images (VMI)) were obtained from a spectral dual-layer CT system. Patient diagnosis were known from the clinical reports and classified into healthy, cyst and hypodense metastasis. In order to compare the value of spectral versus conventional datasets when being passed as input to machine learning algorithms, we implemented a weakly-supervised convolutional neural network (CNN) that learns liver lesion localisation without pixel-level ground truth annotations. Regions-of-interest are selected automatically based on the localisation results and are used to train a second CNN for liver lesion classification (healthy, cyst, hypodense metastasis). The accuracy of lesion localisation was evaluated using the Euclidian distances between the ground truth centres of mass and the predicted centres of mass. Lesion classification was evaluated by precision, recall, accuracy and F1-Score. <jats:italic>Results</jats:italic>: Lesion localisation showed the best results for spectral information with distances of 8.22 ± 10.72 mm, 8.78 ± 15.21 mm and 8.29 ± 12.97 mm for iodine maps, 40 keV and 70 keV VMIs, respectively. With conventional data distances of 10.58 ± 17.65 mm were measured. For lesion classification, the 40 keV VMIs achieved the highest overall accuracy of 0.899 compared to 0.854 for conventional data. <jats:italic>Conclusion</jats:italic>: An enhanced localisation and classification is reported for spectral CT data, which demonstrates that combining machine-learning technology with spectral CT information may in the future improve the clinical workflow as well as the diagnostic accuracy.</jats:p>

Palabras clave: General Nursing.

Pp. 015038

Cardiac radiofrequency ablation tracking using electrical impedance tomography

Duc M NguyenORCID; Pierre Qian; Tony Barry; Alistair McEwan

Palabras clave: General Nursing.

Pp. 015015

Tuning DNA electrical conductivity by silver photo-doping

B K Murgunde; M K RabinalORCID

Palabras clave: General Nursing.

Pp. 015017

Osteogenic differentiation ability of human mesenchymal stem cells on Chitosan/Poly (Caprolactone)/nano beta Tricalcium Phosphate composite scaffolds

Nadeem SiddiquiORCID; Sanjay Madala; Sreenivasa Rao Parcha; Sarada Prasanna Mallick

Palabras clave: General Nursing.

Pp. 015018

Machine learning derived input-function in a dynamic 18F-FDG PET study of mice

Samuel KuttnerORCID; Kristoffer Knutsen Wickstrøm; Gustav Kalda; S Esmaeil Dorraji; Montserrat Martin-Armas; Ana Oteiza; Robert Jenssen; Kristin Fenton; Rune Sundset; Jan Axelsson

Palabras clave: General Nursing.

Pp. 015020

Maximum RBE change in 192Ir, 125I, and 169Yb brachytherapy and the corresponding effect on treatment planning

Humza NusratORCID; Salesha Karim-Picco; Geordi Pang; Moti Paudel; Arman Sarfehnia

Palabras clave: General Nursing.

Pp. 015021

Cell encapsulation in core-shell microcapsules through coaxial electrospinning system and horseradish peroxidase-catalyzed crosslinking

Mehdi KhanmohammadiORCID; Vahid Zolfagharzadeh; Zohreh Bagher; Hadi Soltani; Jafar AiORCID

Palabras clave: General Nursing.

Pp. 015022

A threshold-based method to predict thyroid nodules on scintigraphy scans

Joseph N StemberORCID; Arif Sheikh; Edgar Perez; Chaitanya Divgi; Klaus Hamacher; Sachin Jambawalikar; Randy Yeh

Palabras clave: General Nursing.

Pp. 015019

Improved PET quantification and harmonization by adaptive denoising

Mauro NamíasORCID; Robert Jeraj

Palabras clave: General Nursing.

Pp. 015023

Automated detection of premature ventricular contraction in ECG signals using enhanced template matching algorithm

Abdel Salam Malek; Ashraf Elnahrawy; Hamed Anwar; Mohamed NaeemORCID

Palabras clave: General Nursing.

Pp. 015024