Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Tidal Dissipation Due to Inertial Waves Can Explain the Circularization Periods of Solar-type Binaries

Adrian J. BarkerORCID

<jats:title>Abstract</jats:title> <jats:p>Tidal dissipation is responsible for circularizing the orbits and synchronizing the spins of solar-type close binary stars, but the mechanisms responsible are not fully understood. Previous work has indicated that significant enhancements to the theoretically predicted tidal dissipation rates are required to explain the observed circularization periods (<jats:italic>P</jats:italic> <jats:sub>circ</jats:sub>) in various stellar populations and their evolution with age. This was based partly on the common belief that the dominant mechanism of tidal dissipation in solar-type stars is turbulent viscosity acting on equilibrium tides in convective envelopes. In this paper, we study tidal dissipation in both convection and radiation zones of rotating solar-type stars following their evolution. We study equilibrium tide dissipation, incorporating a frequency-dependent effective viscosity motivated by the latest hydrodynamical simulations, and inertial wave (dynamical tide) dissipation, adopting a frequency-averaged formalism that accounts for the realistic structure of the star. We demonstrate that the observed binary circularization periods can be explained by inertial wave (dynamical tide) dissipation in convective envelopes. This mechanism is particularly efficient during pre-main-sequence phases, but it also operates on the main sequence if the spin is close to synchronism. The predicted <jats:italic>P</jats:italic> <jats:sub>circ</jats:sub> due to this mechanism increases with the main-sequence age in accordance with observations. We also demonstrate that both equilibrium tide and internal gravity-wave dissipation are unlikely to explain the observed <jats:italic>P</jats:italic> <jats:sub>circ</jats:sub>, even during the pre-main sequence, based on our best current understanding of these mechanisms. Finally, we advocate more realistic dynamical studies of stellar populations that employ tidal dissipation due to inertial waves.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L36

Spin Evolution of Stellar-mass Black Holes Embedded in AGN Disks: Orbital Eccentricity Produces Retrograde Circumstellar Flows

Ya-Ping LiORCID; Yi-Xian ChenORCID; Douglas N. C. LinORCID; Zhuoxiao Wang

<jats:title>Abstract</jats:title> <jats:p>The spin evolution of stellar-mass black holes (sBHs) embedded in AGN accretion disks is an important process relevant to the production of gravitational waves from binary BH (BBH) merger events through the AGN channel. Because embedded sBHs are surrounded by circumstellar disks (CSDs), the rotation of CSD gas flows determines the direction of the angular momentum it accretes. In this Letter, we use global 2D hydrodynamic simulations to show that while a disk-embedded sBH on a circular orbit transforms the initial retrograde Keplerian shear of the background accretion disk into a prograde CSD flow, as in the classical picture of companion-disk interaction theory, moderate orbital eccentricity could disrupt the steady-state tidal perturbation and preserve a retrograde CSD flow around the sBH. This switch in CSD orientation occurs at a transition eccentricity that scales nearly proportional to the local sound speed. This bifurcation in the CSD flow and thereafter spin-up direction of SBHs leads to the formation of a population of nearly antialigned sBHs and should be incorporated in future population models of sBH and BBH evolutions.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L1

Schwarzschild and Ledoux are Equivalent on Evolutionary Timescales

Evan H. AndersORCID; Adam S. JermynORCID; Daniel LecoanetORCID; Adrian E. FraserORCID; Imogen G. CresswellORCID; Meridith JoyceORCID; J. R. FuentesORCID

<jats:title>Abstract</jats:title> <jats:p>Stellar evolution models calculate convective boundaries using either the Schwarzschild or Ledoux criterion, but confusion remains regarding which criterion to use. Here we present a 3D hydrodynamical simulation of a convection zone and adjacent radiative zone, including both thermal and compositional buoyancy forces. As expected, regions that are unstable according to the Ledoux criterion are convective. Initially, the radiative zone adjacent to the convection zone is Schwarzschild unstable but Ledoux stable due to a composition gradient. Over many convective overturn timescales, the convection zone grows via entrainment. The convection zone saturates at the size originally predicted by the Schwarzschild criterion, although in this final state the Schwarzschild and Ledoux criteria agree. Therefore, the Schwarzschild criterion should be used to determine the size of stellar convection zones, except possibly during short-lived evolutionary stages in which entrainment persists.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L10

The Mg–K Anticorrelation in ω Centauri

Deimer Antonio Alvarez GarayORCID; Alessio MucciarelliORCID; Carmela LardoORCID; Michele BellazziniORCID; Thibault MerleORCID

<jats:title>Abstract</jats:title> <jats:p>We present [K/Fe] abundance ratios for a sample of 450 stars in <jats:italic>ω</jats:italic> Centauri, using high-resolution spectra acquired with the multiobject spectrograph FLAMES@VLT. Abundances for Fe, Na, and Mg were also derived. We detected intrinsic K variations in the analyzed stars. Moreover, [K/Fe] shows a significant correlation with [Na/Fe] and an anticorrelation with [Mg/Fe]. The presence of a clear-cut Mg–K anticorrelation makes <jats:italic>ω</jats:italic> Centauri the third stellar system, after NGC 2419 and NGC 2808, hosting a subpopulation of stars with [Mg/Fe] &lt; 0.0 dex, K-enriched in the case of <jats:italic>ω</jats:italic> Centauri by ∼0.3 dex with respect to Mg-rich stars ([Mg/Fe] &gt; 0.0 dex). The correlation/anticorrelation between K and other light elements involved in chemical anomalies supports the idea that the spread in [K/Fe] can be associated with the same self-enrichment process typical of globular clusters. We suggest that significant variations in K abundances perhaps can be found in the most massive and/or metal-poor globular clusters as a manifestation of an extreme self-enrichment process. Theoretical models face problems explaining K production in globular clusters. Indeed, models where asymptotic giant branch stars are responsible for the Mg–K anticorrelation only qualitatively agree with the observations. Finally, we discovered a peculiar star with an extraordinary K overabundance ([K/Fe] = +1.60 dex) with respect to the other stars with similar [Mg/Fe]. We suggest that this K-rich star could be formed from the pure ejecta of AGB stars before dilution with pristine material.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L11

Erratum: “Bounds on Velocity-dependent Dark Matter–Proton Scattering from Milky Way Satellite Abundance” (2021, ApJL, 907, 46)

Karime MaamariORCID; Vera GluscevicORCID; Kimberly K. BoddyORCID; Ethan O. NadlerORCID; Risa H. WechslerORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L12

The Magnetic Field versus Density Relation in Star-forming Molecular Clouds

Sayantan AuddyORCID; Shantanu BasuORCID; Takahiro KudohORCID

<jats:title>Abstract</jats:title> <jats:p>We study the magnetic field to density (<jats:italic>B</jats:italic>–<jats:italic>ρ</jats:italic>) relation in turbulent molecular clouds with dynamically important magnetic fields using nonideal three-dimensional magnetohydrodynamic simulations. Our simulations show that there is a distinguishable break density <jats:italic>ρ</jats:italic> <jats:sub>T</jats:sub> between the relatively flat low-density regime and a power-law regime at higher densities. We present an analytic theory for <jats:italic>ρ</jats:italic> <jats:sub>T</jats:sub> based on the interplay of the magnetic field, turbulence, and gravity. The break density <jats:italic>ρ</jats:italic> <jats:sub>T</jats:sub> scales with the strength of the initial Alfvén Mach number <jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal M }}_{{\rm{A}}0}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="italic"></mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">A</mml:mi> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5a5aieqn1.gif" xlink:type="simple" /> </jats:inline-formula> for sub-Alfvénic (<jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal M }}_{{\rm{A}}0}\lt 1$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="italic"></mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">A</mml:mi> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>&lt;</mml:mo> <mml:mn>1</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5a5aieqn2.gif" xlink:type="simple" /> </jats:inline-formula>) and trans-Alfvénic (<jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal M }}_{{\rm{A}}0}\sim 1$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="italic"></mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">A</mml:mi> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:mn>1</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5a5aieqn3.gif" xlink:type="simple" /> </jats:inline-formula>) clouds. We fit the variation of <jats:italic>ρ</jats:italic> <jats:sub>T</jats:sub> for model clouds as a function of <jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal M }}_{{\rm{A}}0}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="italic"></mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">A</mml:mi> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5a5aieqn4.gif" xlink:type="simple" /> </jats:inline-formula>, set by different values of initial sonic Mach number <jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal M }}_{0}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="italic"></mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5a5aieqn5.gif" xlink:type="simple" /> </jats:inline-formula> and the initial ratio of gas pressure to magnetic pressure <jats:italic>β</jats:italic> <jats:sub>0</jats:sub>. This implies that <jats:italic>ρ</jats:italic> <jats:sub>T</jats:sub>, which denotes the transition in mass-to-flux ratio from the subcritical to the supercritical regime, is set by the initial turbulent compression of the molecular cloud.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L2

The Two Hot Corinos of the SVS13-A Protostellar Binary System: Counterposed Siblings

Eleonora BianchiORCID; Ana López-SepulcreORCID; Cecilia CeccarelliORCID; Claudio CodellaORCID; Linda PodioORCID; Mathilde BouvierORCID; Joan Enrique-RomeroORCID

<jats:title>Abstract</jats:title> <jats:p>We present ALMA high-angular-resolution (∼50 au) observations of the Class I binary system SVS13-A. We report images of SVS13-A in numerous interstellar complex organic molecules: CH<jats:sub>3</jats:sub>OH, <jats:sup>13</jats:sup>CH<jats:sub>3</jats:sub>OH, CH<jats:sub>3</jats:sub>CHO, CH<jats:sub>3</jats:sub>OCH<jats:sub>3</jats:sub>, and NH<jats:sub>2</jats:sub>CHO. Two hot corinos at different velocities are imaged in VLA4A (<jats:italic>V</jats:italic> <jats:sub>sys</jats:sub> = +7.7 km s<jats:sup>−1</jats:sup>) and VLA4B (<jats:italic>V</jats:italic> <jats:sub>sys</jats:sub> = +8.5 km s<jats:sup>−1</jats:sup>). From a non-LTE analysis of methanol lines, we derive a gas density of 3 × 10<jats:sup>8</jats:sup> cm<jats:sup>−3</jats:sup> and gas temperatures of 140 and 170 K for VLA4A and VLA4B, respectively. For the other species, the column densities are derived from an LTE analysis. Formamide, which is the only N-bearing species detected in our observations, is more prominent around VLA4A, while dimethyl ether, methanol, and acetaldehyde are associated with both VLA4A and VLA4B. We derive in the two hot corinos abundance ratios of ∼1 for CH<jats:sub>3</jats:sub>OH, <jats:sup>13</jats:sup>CH<jats:sub>3</jats:sub>OH, and CH<jats:sub>3</jats:sub>OCH<jats:sub>3</jats:sub>; ∼2 for CH<jats:sub>3</jats:sub>CHO; and ∼4 for NH<jats:sub>2</jats:sub>CHO. The present data set supports chemical segregation between the different species inside the binary system. The emerging picture is that of an onion-like structure of the two SVS13-A hot corinos, caused by the different binding energies of the species, also supported by ad hoc quantum chemistry calculations. In addition, the comparison between molecular and dust maps suggests that the interstellar complex organic molecules emission originates from slow shocks produced by accretion streamers impacting the VLA4A and VLA4B disks and enriching the gas-phase component.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L3

Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ∼ 0.7

Nicola BorghiORCID; Michele MorescoORCID; Andrea CimattiORCID

<jats:title>Abstract</jats:title> <jats:p>We analyze the stellar ages obtained from a combination of Lick indices in Borghi et al. for 140 massive and passive galaxies selected in the LEGA-C survey at 0.6 &lt; <jats:italic>z</jats:italic> &lt; 0.9. From their median age–redshift relation, we derive a new direct measurement of <jats:italic>H</jats:italic>(<jats:italic>z</jats:italic>) without any cosmological model assumption using the cosmic chronometer approach. We thoroughly study the main systematics involved in this analysis: the choice of the Lick indices combination, the binning method, the assumed stellar population model, and the adopted star formation history; these effects are included in the total error budget. We obtain <jats:italic>H</jats:italic>(<jats:italic>z</jats:italic> = 0.75) = 98.8 ± 33.6 km s<jats:sup>−1</jats:sup> Mpc<jats:sup>−1</jats:sup>. In parallel, we also propose a simple framework based on a cosmological model to describe the age–redshift relations in the context of galaxy downsizing. This allows us to derive constraints on the Hubble constant <jats:italic>H</jats:italic> <jats:sub>0</jats:sub> and the typical galaxy formation time. This new <jats:italic>H</jats:italic>(<jats:italic>z</jats:italic>) measurement, whose accuracy is currently limited by the scarcity of the sample analyzed, paves the road for the joint study of the stellar populations of individual passive galaxies and the expansion history of the universe in light of future spectroscopic surveys.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L4

The Local Group Mass in the Light of Gaia

David BenistyORCID; Eugene VasilievORCID; N. Wyn Evans; Anne-Christine Davis; Odelia V. Hartl; Louis E. StrigariORCID

<jats:title>Abstract</jats:title> <jats:p>High-accuracy proper motions (PMs) of M31 and other Local Group (LG) satellites have now been provided by the Gaia satellite. We revisit the timing argument to compute the total mass <jats:italic>M</jats:italic> of the LG from the orbit of the Milky Way and M31, allowing for the cosmological constant. We rectify a systematic effect caused by the presence of the Large Magellanic Cloud (LMC). The interaction of the LMC with the Milky Way induces a motion toward the LMC. This contribution to the measured velocity of approach of the Milky Way and M31 must be removed. We allow for cosmic bias and scatter by extracting correction factors tailored to the accretion history of the LG. The distribution of correction factors is centered around 0.63 with a scatter of ±0.2, indicating that the timing argument significantly overestimates the true mass. Adjusting for all these effects, the estimated mass of the LG is <jats:inline-formula> <jats:tex-math> <?CDATA $M={3.4}_{-1.1}^{+1.4}\times {10}^{12}{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.4</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5c42ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> (68% CL) when using the M31 tangential velocity, <jats:inline-formula> <jats:tex-math> <?CDATA ${v}_{\tan }={82}_{-35}^{+38}\,\mathrm{km}\,{{\rm{s}}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>tan</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>82</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>35</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>38</mml:mn> </mml:mrow> </mml:msubsup> <mml:mspace width="0.25em" /> <mml:mi>km</mml:mi> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5c42ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. Lower tangential velocity models with <jats:inline-formula> <jats:tex-math> <?CDATA ${v}_{\tan }={59}_{-38}^{+42}\,\mathrm{km}\,{{\rm{s}}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>tan</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>59</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>38</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>42</mml:mn> </mml:mrow> </mml:msubsup> <mml:mspace width="0.25em" /> <mml:mi>km</mml:mi> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal">s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5c42ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> (derived from the same PM data with a flat prior on the tangential velocity) lead to an estimated mass of <jats:inline-formula> <jats:tex-math> <?CDATA $M={3.1}_{-1.0}^{+1.3}\times {10}^{12}{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.3</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5c42ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> (68% CL). By making an inventory of the total mass associated with the four most substantial LG members (the Milky Way, M31, M33, and the LMC), we estimate the known mass to be in the range <jats:inline-formula> <jats:tex-math> <?CDATA ${3.7}_{-0.5}^{+0.5}\times {10}^{12}\,{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>3.7</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.5</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac5c42ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L5

Solar Energetic Particles Produced during Two Fast Coronal Mass Ejections

Xiaolei LiORCID; Yuming WangORCID; Jingnan GuoORCID; Shaoyu LyuORCID

<jats:title>Abstract</jats:title> <jats:p>Two recent extremely fast coronal mass ejections (CMEs) are of particular interest. The first one originated from the southern hemisphere on 2021 October 28 and caused strong solar energetic particle (SEP) events over a wide longitude range from Earth, STEREO-A, to Mars. However, the other one, originating from the center of the Earth-viewed solar disk 5 days later, left weak SEP signatures in the heliosphere. Based on the white-light images of the CMEs from the Solar and Heliospheric Observatory (SOHO) and the Ahead Solar Terrestrial Relations Observatory (STEREO-A), in combination with the observations of the corresponding solar flares, radio bursts, and in situ magnetic fields and particles, we try to analyze the series of solar eruptions during October 28–November 2 as well as their correspondences with the in situ features. It is found that the difference in SEP features between the two CMEs is mainly due to (1) the seed particles probably supplied by associated flares and (2) the magnetic connection influenced by the preceding solar wind speed.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L6