Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Signatures of AGN-induced Metal Loss in the Stellar Population

A. Camps-Fariña; S. F. SánchezORCID; L. CarigiORCID; E. A. D. LacerdaORCID; R. García-BenitoORCID; D. MastORCID; L. GalbanyORCID; J. K. Barrera-BallesterosORCID

<jats:title>Abstract</jats:title> <jats:p>One way the active galactic nuclei (AGN) are expected to influence the evolution of their host galaxies is by removing metal content via outflows. In this article we present results that show that AGN can have an effect on the chemical enrichment of their host galaxies using the fossil record technique on CALIFA galaxies. We classified the chemical enrichment histories of all galaxies in our sample regarding whether they show a drop in the value of their metallicity. We find that galaxies currently hosting an AGN are more likely to show this drop in their metal content compared to the quiescent sample. Once we separate the sample by their star-forming status we find that star-forming galaxies are less likely to have a drop in metallicity but have deeper decreases when these appear. This behavior could be evidence for the influence of either pristine gas inflows or galactic outflows triggered by starbursts, both of which can produce a drop in metallicity.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L20

FAST Discovery of a Long H i Accretion Stream toward M106

Ming ZhuORCID; Haiyang Yu; Jie WangORCID; Jin-Long Xu; Wei DuORCID; Lixia YuanORCID; Jing WangORCID; Yingjie Jing; Mei Ai; Peng Jiang

<jats:title>Abstract</jats:title> <jats:p>We report the discovery of a possible accretion stream toward a Milky Way–type galaxy M106 based on very deep H <jats:sc>i</jats:sc> imaging data with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The accretion stream extends for about 130 kpc in projection length and it is similar to the Magellanic stream in many respects. We provide unambiguous evidence based on the stream morphology, kinematics and local star formation activity to show that the H <jats:sc>i</jats:sc> gas is being accreted onto the disk of M106. Such a long continuous flow of gas provides a unique opportunity to probe the circumgalactic medium (CGM) and reveals how the gas stream traverses the hot halo and CGM, and eventually reaches the galaxy disk. The source of the stream appears to be from M106's satellite galaxy NGC 4288. We argue that the stream of gas could be due to the tidal interaction with NGC 4288, or with a high speed encounter near this system. Close to the position of UGC 7356 the stream bifurcates into two streams. The second stream may be gas tidally stripped from UGC 7356 or due to an interaction with UGC 7356. Our results show that high-sensitivity H <jats:sc>i</jats:sc> imaging is crucial in revealing low column density accretion features in nearby galaxies.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L21

Erratum: “Bayesian Evidence for a Nonlinear Damping Model for Coronal Loop Oscillations” (2021, ApJL, 915, L25)

Iñigo ArreguiORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L22

Star Formation Regulation and Self-pollution by Stellar Wind Feedback

Lachlan LancasterORCID; Eve C. OstrikerORCID; Jeong-Gyu KimORCID; Chang-Goo KimORCID

<jats:title>Abstract</jats:title> <jats:p>Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 10<jats:sup>2</jats:sup>–10<jats:sup>4</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> pc<jats:sup>−2</jats:sup> and show that star formation and residual gas dispersal are complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10<jats:sup>−4</jats:sup> of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L3

Hidden Water in Magma Ocean Exoplanets

Caroline DornORCID; Tim LichtenbergORCID

<jats:title>Abstract</jats:title> <jats:p>We demonstrate that the deep volatile storage capacity of magma oceans has significant implications for the bulk composition, interior, and climate state inferred from exoplanet mass and radius data. Experimental petrology provides the fundamental properties of the ability of water and melt to mix. So far, these data have been largely neglected for exoplanet mass–radius modeling. Here we present an advanced interior model for water-rich rocky exoplanets. The new model allows us to test the effects of rock melting and the redistribution of water between magma ocean and atmosphere on calculated planet radii. Models with and without rock melting and water partitioning lead to deviations in planet radius of up to 16% for a fixed bulk composition and planet mass. This is within the current accuracy limits for individual systems and statistically testable on a population level. Unrecognized mantle melting and volatile redistribution in retrievals may thus underestimate the inferred planetary bulk water content by up to 1 order of magnitude.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L4

Who Ordered That? Unequal-mass Binary Black Hole Mergers Have Larger Effective Spins

Thomas A. CallisterORCID; Carl-Johan HasterORCID; Ken K. Y. NgORCID; Salvatore VitaleORCID; Will M. FarrORCID

<jats:title>Abstract</jats:title> <jats:p>Hierarchical analysis of binary black hole (BBH) detections by the Advanced LIGO and Virgo detectors has offered an increasingly clear picture of their mass, spin, and redshift distributions. Fully understanding the formation and evolution of BBH mergers will require not just the characterization of these marginal distributions, but the discovery of any correlations that exist between the properties of BBHs. Here, we hierarchically analyze the ensemble of BBHs discovered by LIGO and Virgo with a model that allows for intrinsic correlations between their mass ratios <jats:italic>q</jats:italic> and effective inspiral spins <jats:italic>χ</jats:italic> <jats:sub>eff</jats:sub>. At 98.7% credibility, we find that the mean of the <jats:italic>χ</jats:italic> <jats:sub>eff</jats:sub> distribution varies as a function of <jats:italic>q</jats:italic>, such that more unequal-mass BBHs exhibit systematically larger <jats:italic>χ</jats:italic> <jats:sub>eff</jats:sub>. We find a Bayesian odds ratio of 10.5 in favor of a model that allows for such a correlation over one that does not. Finally, we use simulated signals to verify that our results are robust against degeneracies in the measurements of <jats:italic>q</jats:italic> and <jats:italic>χ</jats:italic> <jats:sub>eff</jats:sub> for individual events. While many proposed astrophysical formation channels predict some degree correlation between spins and mass ratio, these predicted correlations typically act in an opposite sense to the trend we observationally identify in the data.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L5

Evidence for Mixing between ICM and Stripped ISM by the Analysis of the Gas Metallicity in the Tails of Jellyfish Galaxies

Andrea FranchettoORCID; Stephanie TonnesenORCID; Bianca M. PoggiantiORCID; Benedetta VulcaniORCID; Marco GullieuszikORCID; Alessia MorettiORCID; Rory SmithORCID; Alessandro IgnestiORCID; Cecilia BacchiniORCID; Sean McGeeORCID; Neven TomičićORCID; Matilde MingozziORCID; Anna WolterORCID; Ancla MüllerORCID

<jats:title>Abstract</jats:title> <jats:p>Hydrodynamical simulations show that the ram pressure stripping in galaxy clusters fosters a strong interaction between stripped interstellar medium (ISM) and the surrounding medium, with the possibility of intracluster medium (ICM) cooling into cold gas clouds. Exploiting the MUSE observation of three jellyfish galaxies from the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey, we explore the gas metallicity of star-forming clumps in their gas tails. We find that the oxygen abundance of the stripped gas decreases as a function of the distance from the parent galaxy disk; the observed metallicity profiles indicate that more than 40% of the most metal-poor stripped clouds are constituted by cooled ICM, in qualitative agreement with simulations that predict mixing between the metal-rich ISM and the metal-poor ICM.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L6

Can a Strong Radio Burst Escape the Magnetosphere of a Magnetar?

Andrei M. BeloborodovORCID

<jats:title>Abstract</jats:title> <jats:p>We examine the possibility that fast radio bursts (FRBs) are emitted inside the magnetosphere of a magnetar. On its way out, the radio wave must interact with a low-density <jats:italic>e</jats:italic> <jats:sup>±</jats:sup> plasma in the outer magnetosphere at radii <jats:italic>R</jats:italic> = 10<jats:sup>9</jats:sup>–10<jats:sup>10</jats:sup> cm. In this region, the magnetospheric particles have a huge cross section for scattering the wave. As a result, the wave strongly interacts with the magnetosphere and compresses it, depositing the FRB energy into the compressed field and the scattered radiation. The scattered spectrum extends to the <jats:italic>γ</jats:italic>-ray band and triggers <jats:italic>e</jats:italic> <jats:sup>±</jats:sup> avalanche, further boosting the opacity. These processes choke FRBs, disfavoring scenarios with a radio source confined at <jats:italic>R</jats:italic> ≪ 10<jats:sup>10</jats:sup> cm. Observed FRBs can be emitted by magnetospheric flare ejecta transporting energy to large radii.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L7

Recurrent Activity from Active Asteroid (248370) 2005 QN173: A Main-belt Comet

Colin Orion ChandlerORCID; Chadwick A. TrujilloORCID; Henry H. HsiehORCID

<jats:title>Abstract</jats:title> <jats:p>We present archival observations of main-belt asteroid (248370) 2005 QN<jats:sub>173</jats:sub> (also designated 433P) that demonstrate this recently discovered active asteroid (a body with a dynamically asteroidal orbit displaying a tail or coma) has had at least one additional apparition of activity near perihelion during a prior orbit. We discovered evidence of this second activity epoch in an image captured 2016 July 22 with the DECam on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. As of this writing, (248370) 2005 QN<jats:sub>173</jats:sub> is just the eighth active asteroid demonstrated to undergo recurrent activity near perihelion. Our analyses demonstrate (248370) 2005 QN<jats:sub>173</jats:sub> is likely a member of the active asteroid subset known as main-belt comets, a group of objects that orbit in the main asteroid belt that exhibit activity that is specifically driven by sublimation. We implement an activity detection technique, <jats:italic>wedge photometry</jats:italic>, that has the potential to detect tails in images of solar system objects and quantify their agreement with computed antisolar and antimotion vectors normally associated with observed tail directions. We present a catalog and an image gallery of archival observations. The object will soon become unobservable as it passes behind the Sun as seen from Earth, and when it again becomes visible (late 2022) it will be farther than 3 au from the Sun. Our findings suggest (248370) 2005 QN<jats:sub>173</jats:sub> is most active interior to 2.7 au (0.3 au from perihelion), so we encourage the community to observe and study this special object before 2021 December.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L8

Physical Characterization of Main-belt Comet (248370) 2005 QN173

Henry H. HsiehORCID; Colin O. ChandlerORCID; Larry DenneauORCID; Alan FitzsimmonsORCID; Nicolas ErasmusORCID; Michael S. P. KelleyORCID; Matthew M. KnightORCID; Tim A. ListerORCID; Jana PittichováORCID; Scott S. SheppardORCID; Audrey ThirouinORCID; Chadwick A. TrujilloORCID; Helen UsherORCID; Edward GomezORCID; Joey ChatelainORCID; Sarah GreenstreetORCID; Tony AngelORCID; Richard MilesORCID; Paul Roche; Ben WoodingORCID

<jats:title>Abstract</jats:title> <jats:p>We report results from new and archival observations of the newly discovered active asteroid (248370) 2005 QN<jats:sub>173</jats:sub> (also now designated Comet 433P), which has been determined to be a likely main-belt comet based on a subsequent discovery that it is recurrently active near perihelion. From archival data analysis, we estimate <jats:inline-formula> <jats:tex-math> <?CDATA $g^{\prime} $?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>g</mml:mi> <mml:mo accent="false">′</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>-, <jats:inline-formula> <jats:tex-math> <?CDATA $r^{\prime} $?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>r</mml:mi> <mml:mo accent="false">′</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>-, <jats:inline-formula> <jats:tex-math> <?CDATA $i^{\prime} $?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>i</mml:mi> <mml:mo accent="false">′</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>-, and <jats:inline-formula> <jats:tex-math> <?CDATA $z^{\prime} $?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>z</mml:mi> <mml:mo accent="false">′</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>-band absolute magnitudes for the nucleus of <jats:italic>H</jats:italic> <jats:sub> <jats:italic>g</jats:italic> </jats:sub> = 16.62 ± 0.13, <jats:italic>H</jats:italic> <jats:sub> <jats:italic>r</jats:italic> </jats:sub> = 16.12 ± 0.10, <jats:italic>H</jats:italic> <jats:sub> <jats:italic>i</jats:italic> </jats:sub> = 16.05 ± 0.11, and <jats:italic>H</jats:italic> <jats:sub> <jats:italic>z</jats:italic> </jats:sub> = 15.93 ± 0.08, corresponding to nucleus colors of <jats:inline-formula> <jats:tex-math> <?CDATA $g^{\prime} -r^{\prime} =0.50\pm 0.16$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>g</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>−</mml:mo> <mml:mi>r</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.50</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.16</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA $r^{\prime} -i^{\prime} =0.07\pm 0.15$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>r</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>−</mml:mo> <mml:mi>i</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.07</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.15</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn6.gif" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math> <?CDATA $i^{\prime} -z^{\prime} =0.12\pm 0.14$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>i</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>−</mml:mo> <mml:mi>z</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.12</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.14</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn7.gif" xlink:type="simple" /> </jats:inline-formula>; an equivalent <jats:italic>V</jats:italic>-band absolute magnitude of <jats:italic>H</jats:italic> <jats:sub> <jats:italic>V</jats:italic> </jats:sub> = 16.32 ± 0.08; and a nucleus radius of <jats:italic>r</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> = 1.6 ± 0.2 km (using a <jats:italic>V</jats:italic>-band albedo of <jats:italic>p</jats:italic> <jats:sub> <jats:italic>V</jats:italic> </jats:sub> = 0.054 ± 0.012). Meanwhile, we find mean near-nucleus coma colors when 248370 is active of <jats:inline-formula> <jats:tex-math> <?CDATA $g^{\prime} -r^{\prime} =0.47\pm 0.03$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>g</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>−</mml:mo> <mml:mi>r</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.47</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.03</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn8.gif" xlink:type="simple" /> </jats:inline-formula>, <jats:inline-formula> <jats:tex-math> <?CDATA $r^{\prime} -i^{\prime} =0.10\pm 0.04$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>r</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>−</mml:mo> <mml:mi>i</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.10</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.04</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn9.gif" xlink:type="simple" /> </jats:inline-formula>, and <jats:inline-formula> <jats:tex-math> <?CDATA $i^{\prime} -z^{\prime} =0.05\pm 0.05$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>i</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>−</mml:mo> <mml:mi>z</mml:mi> <mml:mo accent="false">′</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.05</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.05</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2c62ieqn10.gif" xlink:type="simple" /> </jats:inline-formula> and similar mean dust tail colors, suggesting that no significant gas coma is present. We find approximate ratios between the scattering cross sections of near-nucleus dust (within 5000 km of the nucleus) and the nucleus of <jats:italic>A</jats:italic> <jats:sub> <jats:italic>d</jats:italic> </jats:sub>/<jats:italic>A</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> = 0.7 ± 0.3 on 2016 July 22 and 1.8 &lt; <jats:italic>A</jats:italic> <jats:sub> <jats:italic>d</jats:italic> </jats:sub>/<jats:italic>A</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub> &lt; 2.9 in 2021 July and August. During the 2021 observation period, the coma declined in intrinsic brightness by ∼0.35 mag (or ∼25%) in 37 days, while the surface brightness of the dust tail remained effectively constant over the same period. Constraints derived from the sunward extent of the coma and width of the tail as measured perpendicular to the orbit plane suggest that the terminal velocities of ejected dust grains are extremely slow (∼1 m s<jats:sup>−1</jats:sup> for 1 <jats:italic>μ</jats:italic>m particles), suggesting that the observed dust emission may be aided by rapid rotation of the nucleus lowering the effective escape velocity.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L9