Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

A Rotating Azimuthally Distributed Auroral Current System on Saturn Revealed by the Cassini Spacecraft

R. L. GuoORCID; Z. H. Yao; W. R. DunnORCID; B. PalmaertsORCID; N. SergisORCID; D. GrodentORCID; S. V. Badman; S. Y. YeORCID; Z. Y. Pu; D. G. MitchellORCID; B. Z. Zhang; N. Achilleos; A. J. CoatesORCID; Y. WeiORCID; J. H. Waite; N. Krupp; M. K. DoughertyORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L25

ZTFJ0038+2030: A Long-period Eclipsing White Dwarf and a Substellar Companion

Jan van RoestelORCID; Thomas KupferORCID; Keaton J. BellORCID; Kevin BurdgeORCID; Przemek MrózORCID; Thomas A. PrinceORCID; Eric C. BellmORCID; Andrew Drake; Richard DekanyORCID; Ashish A. MahabalORCID; Michael Porter; Reed RiddleORCID; Kyung Min ShinORCID; David L. ShupeORCID; S. R. KulkarniORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L26

von Karman Correlation Similarity of the Turbulent Interplanetary Magnetic Field

Sohom RoyORCID; R. ChhiberORCID; S. DassoORCID; M. E. Ruiz; W. H. MatthaeusORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L27

Using Magnetic Flux Conservation to Determine Heliosheath Speeds

J. D. RichardsonORCID; A. C. CummingsORCID; L. F. BurlagaORCID; J. GiacaloneORCID; M. OpherORCID; E. C. StoneORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L28

Decay of Solar Pores Driven by Small-scale Magnetic Reconnection Episodes

Zhike XueORCID; Xiaoli YanORCID; Liheng YangORCID; Jie ChenORCID; Jincheng WangORCID; Qiaoling LiORCID; Li Zhao

<jats:title>Abstract</jats:title> <jats:p>We present the relationships between the disappearances of two small pores, magnetic cancellations, and magnetic reconnection episodes in the NOAA AR 12778 on 2020 October 26 with high-resolution observations of the New Vacuum Solar Telescope and the Solar Dynamics Observatory. Two emerging positive polarities (P1 and P2) approach a negative polarity (N1) with velocities of 0.26 and 0.42 km s<jats:sup>−1</jats:sup>, respectively. Then, two small-scale magnetic reconnection episodes occur between a series of magnetic loops that are rooted in these polarities. The reconnection inflow velocities are around 4.0 km s<jats:sup>−1</jats:sup> which is faster than the movements of P1 and P2. Compared with the first magnetic reconnection episode, more magnetic free energy is released in the second reconnection episode due to the greater magnetic strength of P2. Subsequently, magnetic cancellation occurs first between P1 and N1, and then between P2 and N1. At the same time, the pores S1 (N1) and S2 (P2) decay and disappear. The area decay rate of the small pore S2 is estimated to be 7.3 Mm<jats:sup>2</jats:sup> hr<jats:sup>−1</jats:sup>, which is larger than previously reported cases. And the flux decay rate of S2 is 5.1 × 10<jats:sup>19</jats:sup> Mx hr<jats:sup>−1</jats:sup>, similar to the results obtained in the larger sunspots. We conclude that the magnetic reconnection episodes may be caused by both the movement of the magnetic polarities and the plasma dynamics themselves. The decay and disappearance of the small pores and the polarities are driven by magnetic reconnection episodes and then flux submergence. We suggest that a magnetic reconnection episode is a more efficient mechanism for the disappearance of solar pores.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L29

Turbulent Cascade and Energy Transfer Rate in a Solar Coronal Mass Ejection

Luca Sorriso-ValvoORCID; Emiliya YordanovaORCID; Andrew P. DimmockORCID; Daniele TelloniORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L30

Evolution of Switchbacks in the Inner Heliosphere

Anna TeneraniORCID; Nikos Sioulas; Lorenzo MatteiniORCID; Olga PanasencoORCID; Chen ShiORCID; Marco VelliORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L31

Could Nearby Star-forming Galaxies Light Up the Pointlike Neutrino Sky?

Antonio AmbrosoneORCID; Marco Chianese; Damiano F. G. Fiorillo; Antonio Marinelli; Gennaro Miele

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L32

Alfvén Speed Transition Zone in the Solar Corona

David B. WexlerORCID; Michael L. StevensORCID; Anthony W. CaseORCID; Paul SongORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L33

Why Do M Dwarfs Have More Transiting Planets?

Gijs D. MuldersORCID; Joanna DrążkowskaORCID; Nienke van der MarelORCID; Fred J. CieslaORCID; Ilaria PascucciORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L1