Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

The Atomic Gas Mass of Green Pea Galaxies

N. KanekarORCID; T. GhoshORCID; J. RhoadsORCID; S. MalhotraORCID; S. HarishORCID; J. N. ChengalurORCID; K. M. Jones

<jats:title>Abstract</jats:title> <jats:p>We have used the Arecibo Telescope and the Green Bank Telescope (GBT) to carry out a deep search for H<jats:sc>i</jats:sc> 21 cm emission from a large sample of “Green Pea” galaxies, yielding 19 detections, and 21 upper limits on the H<jats:sc>i</jats:sc> mass. We obtain H<jats:sc>i</jats:sc> masses of <jats:italic>M</jats:italic> <jats:sub>H<jats:sc>i</jats:sc> </jats:sub> ≈ (4–300) × 10<jats:sup>8</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> for the detections, with a median H<jats:sc>i</jats:sc> mass of ≈ 2.6 × 10<jats:sup>9</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>; for the non-detections, the median 3<jats:italic>σ</jats:italic> upper limit on the H<jats:sc>i</jats:sc> mass is ≈ 5.5 × 10<jats:sup>8</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. These are the first estimates of the atomic gas content of Green Pea galaxies. We find that the H<jats:sc>i</jats:sc>-to-stellar mass ratio in Green Peas is consistent with trends identified in star-forming galaxies in the local universe. However, the median H<jats:sc>i</jats:sc> depletion timescale in Green Peas is ≈0.6 Gyr, an order of magnitude lower than that obtained in local star-forming galaxies. This implies that Green Peas consume their atomic gas on very short timescales. A significant fraction of the Green Peas of our sample lie ≳0.6 dex (2<jats:italic>σ</jats:italic>) above the local <jats:italic>M</jats:italic> <jats:sub>H<jats:sc>i</jats:sc> </jats:sub>–<jats:italic>M</jats:italic> <jats:sub> <jats:italic>B</jats:italic> </jats:sub> relation, suggesting recent gas accretion. Further, ≈30% of the Green Peas are more than ±2<jats:italic>σ</jats:italic> deviant from this relation, suggesting possible bimodality in the Green Pea population. We obtain a low H<jats:sc>i</jats:sc> 21 cm detection rate in the Green Peas with the highest O32 ≡ [O <jats:sc>iii</jats:sc>]<jats:italic>λ</jats:italic>5007/[O <jats:sc>ii</jats:sc>]<jats:italic>λ</jats:italic>3727 luminosity ratios, O32 &gt; 10, consistent with the high expected Lyman-continuum leakage from these galaxies.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L15

Evidence for TiO in the Atmosphere of the Hot Jupiter HAT-P-65 b

Guo ChenORCID; Enric PalléORCID; Hannu ParviainenORCID; Felipe MurgasORCID; Fei YanORCID

<jats:title>Abstract</jats:title> <jats:p>We present the low-resolution transmission spectra of the puffy hot Jupiter HAT-P-65b (0.53 M<jats:sub>Jup</jats:sub>, 1.89 R<jats:sub>Jup</jats:sub>, <jats:italic>T</jats:italic> <jats:sub>eq</jats:sub> = 1930 K), based on two transits observed using the OSIRIS spectrograph on the 10.4 m Gran Telescopio CANARIAS. The transmission spectra of the two nights are consistent, covering the wavelength range 517–938 nm and consisting of mostly 5 nm spectral bins. We perform equilibrium-chemistry spectral retrieval analyses on the jointly fitted transmission spectrum and obtain an equilibrium temperature of <jats:inline-formula> <jats:tex-math> <?CDATA ${1645}_{-244}^{+255}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabfbe1ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> K and a cloud coverage of <jats:inline-formula> <jats:tex-math> <?CDATA ${36}_{-17}^{+23}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabfbe1ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>%, revealing a relatively clear planetary atmosphere. Based on free-chemistry retrieval, we report strong evidence for titanium oxide (TiO). Additional individual analyses in each night reveal weak-to-moderate evidence for TiO in both nights, but moderate evidence for Na or VO only in one of the nights. Future high-resolution Doppler spectroscopy as well as emission observations will help confirm the presence of TiO and constrain its role in shaping the vertical thermal structure of HAT-P-65b’s atmosphere.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L16

Erratum: “NICER View of the 2020 Burst Storm and Persistent Emission of SGR 1935+2154” (2020, ApJL, 904, L21)

George YounesORCID; Tolga GüverORCID; Chryssa KouveliotouORCID; Matthew G. BaringORCID; Chin-Ping HuORCID; Zorawar WadiasinghORCID; Beste Begiçarslan; Teruaki EnotoORCID; Ersin GöğüşORCID; Lin LinORCID; Alice K. HardingORCID; Alexander J. van der HorstORCID; Walid A. MajidORCID; Sebastien GuillotORCID; Christian MalacariaORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L17

Astromers in the Radioactive Decay of r-process Nuclei

G. Wendell MischORCID; T. M. SprouseORCID; M. R. MumpowerORCID

<jats:title>Abstract</jats:title> <jats:p>Certain nuclear isomers are well known to affect nucleosynthesis with important observable consequences (e.g., <jats:sup>26</jats:sup>Al and <jats:sup>180</jats:sup>Ta). We study the impact of nuclear isomers in the context of rapid neutron capture process (<jats:italic>r</jats:italic>-process) nucleosynthesis. We demonstrate that nuclear isomers are dynamically populated in the <jats:italic>r </jats:italic>process and that some are populated far from thermal equilibrium; this makes them astrophysical isomers, or “astromers.” We compute thermally mediated transition rates between long-lived isomers and the corresponding ground states in neutron-rich nuclei. We calculate the temperature-dependent <jats:italic>β</jats:italic>-decay feeding factors, which represent the fraction of material going to each of the isomer and ground state daughter species from the <jats:italic>β</jats:italic>-decay parent species. We simulate nucleosynthesis following the decay of a solar-like <jats:italic>r</jats:italic>-process composition and include as separate species nuclear excited states with measured terrestrial half-lives greater than 100 <jats:italic>μ</jats:italic>s. We introduce a new metric to identify those astromers most likely to be influential and summarize them in a table. Notable entries include many second peak nuclei (e.g., the Te isotopic chain) and previously overlooked isomers in stable nuclei (e.g., <jats:sup>119</jats:sup>Sn, <jats:sup>131</jats:sup>Xe, and <jats:sup>195</jats:sup>Pt). Finally, we comment on the capacity of isomer production to alter radioactive heating in an <jats:italic>r</jats:italic>-process environment.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L2

Searching for Extragalactic Exoplanetary Systems: The Curious Case of BD+20 2457

Hélio D. PerottoniORCID; João A. S. AmaranteORCID; Guilherme LimbergORCID; Helio J. Rocha-PintoORCID; Silvia RossiORCID; Friedrich AndersORCID; Lais BorbolatoORCID

<jats:title>Abstract</jats:title> <jats:p>Planets and their host stars carry a long-term memory of their origin in their chemical compositions. Thus, identifying planets formed in different environments improves our understating of planetary formation. Although restricted to detecting exoplanets within the solar vicinity, we might be able to detect planetary systems that formed in small external galaxies and later merged with the Milky Way. In fact, Gaia data have unequivocally shown that the Galaxy underwent several significant minor mergers during its first billion years of formation. The stellar debris of one of these mergers, Gaia-Enceladus (GE), is thought to have built up most of the stellar halo in the solar neighborhood. In this Letter, we investigate the origin of known planet-host stars combining data from the NASA Exoplanet Archive with Gaia EDR3 and large-scale spectroscopic surveys. We adopt a kinematic criterion and identify 42 stars associated with the Milky Way’s thick disk and one halo star. The only halo star identified, BD+20 2457, known to harbor two exoplanets, moves on a retrograde and highly eccentric orbit. Its chemical abundance pattern situates the star at the border between the thick disk, the old halo, and accreted populations. Given its orbital parameters and chemical properties, we suggest that BD+20 2457 is likely formed in the protodisk of the Galaxy, but we do not exclude the possibility of the star belonging to the debris of GE. Finally, we estimate a minimum age and mass limit for the star, which has implications for its planetary system and will be tested with future Transiting Exoplanet Survey Satellite observations.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L3

Tracking the Evolution of Lithium in Giants Using Asteroseismology: Super-Li-rich Stars Are Almost Exclusively Young Red-clump Stars

Raghubar SinghORCID; Bacham E. Reddy; Simon W. Campbell; Yerra Bharat Kumar; Mathieu Vrard

<jats:title>Abstract</jats:title> <jats:p>We report novel observational evidence on the evolutionary status of lithium-rich giant stars by combining asteroseismic and lithium abundance data. Comparing observations and models of the asteroseismic gravity-mode period spacing ΔΠ<jats:sub>1</jats:sub>, we find that super-Li-rich giants (SLRs, <jats:italic>A</jats:italic>(Li) &gt; 3.2 dex) are almost exclusively young red-clump (RC) stars. Depending on the exact phase of evolution, which requires more data to refine, SLR stars are either (i) less than ∼2 Myr or (ii) less than ∼40 Myr past the main core helium flash (CHeF). Our observations set a strong upper limit for the time of the inferred Li-enrichment phase of &lt;40 Myr post-CHeF, lending support to the idea that lithium is produced around the time of the CHeF. In contrast, the more evolved RC stars (&gt;40 Myr post-CHeF) generally have low lithium abundances (<jats:italic>A</jats:italic>(Li)  &lt;1.0 dex). Between the young, super-Li-rich phase, and the mostly old, Li-poor RC phase, there is an average reduction of lithium by about 3 orders of magnitude. This Li destruction may occur rapidly. We find the situation to be less clear with stars having Li abundances between the two extremes of super-Li-rich and Li-poor. This group, the “Li-rich” stars (3.2 &gt; <jats:italic>A</jats:italic>(Li) &gt; 1.0 dex), shows a wide range of evolutionary states.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L4

Probing Multiple Populations of Compact Binaries with Third-generation Gravitational-wave Detectors

Ken K. Y. NgORCID; Salvatore VitaleORCID; Will M. FarrORCID; Carl L. RodriguezORCID

<jats:title>Abstract</jats:title> <jats:p>Third-generation (3G) gravitational-wave detectors will be able to observe binary black hole mergers (BBHs) up to a redshift of ∼30. This gives unprecedented access to the formation and evolution of BBHs throughout cosmic history. In this paper, we consider three subpopulations of BBHs originating from the different evolutionary channels: isolated formation in galactic fields, dynamical formation in globular clusters, and mergers of black holes formed from Population III (Pop III) stars at very high redshift. Using input from population synthesis analyses, we create 2 months of simulated data of a network of 3G detectors made of two Cosmic Explorers and one Einstein Telescope consisting of ∼16,000 field and cluster BBHs, as well as ∼400 Pop III BBHs. First, we show how one can use a nonparametric model to infer the existence and characteristics of a primary and secondary peak in the merger rate distribution as a function of redshift. In particular, the location and height of the secondary peak around <jats:italic>z</jats:italic> ≈ 12, arising from the merger of Pop III remnants, can be constrained at the <jats:inline-formula> <jats:tex-math> <?CDATA ${ \mathcal O }(10 \% )$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabf8beieqn1.gif" xlink:type="simple" /> </jats:inline-formula> level (95% credible interval). Then we perform a modeled analysis using phenomenological templates for the merger rates of the three subpopulations and extract the branching ratios and characteristic parameters of the merger rate densities of the individual formation channels. With this modeled method, the uncertainty on the measurement of the fraction of Pop III BBHs can be improved to ≲10%, while the ratio between field and cluster BBHs can be measured with an uncertainty of ∼100%.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L5

Precovery Observations Confirm the Capture Time of Asteroid 2020 CD3 as Earth’s Minimoon

Shantanu P. NaiduORCID; Marco MicheliORCID; Davide FarnocchiaORCID; Javier RoaORCID; Grigori FedoretsORCID; Eric Christensen; Robert WerykORCID

<jats:title>Abstract</jats:title> <jats:p>Asteroid 2020 CD3 was discovered on 2020 February 15 by the Catalina Sky Survey while it was temporarily captured in a geocentric orbit before escaping Earth’s Hill sphere on 2020 March 7. We searched archival images and found precoveries of 2020 CD3 from the Dark Energy Camera and Catalina Sky survey. The Dark Energy Camera images yielded three observations on 2019 January 17, while the Catalina Sky Survey images yielded four observations on 2019 January 24 from the Mt. Lemmon telescope and four observations on 2018 May 9 from the Mt. Bigelow telescope. These precovery observations allowed us to refine the orbit of 2020 CD3 and determine that it was captured in a geocentric orbit on 2017 September 15 after a close approach to the Moon at a distance of 11,974 ± 10 km. We analyzed the trajectory of 2020 CD3 to look for potential Earth impacts within the next 100 years and find a ≳1% probability of an impact between 2061 and 2120 depending on nongravitational force model assumptions. The small size of 2020 CD3, about 1 to 2 m, makes any potential impact harmless.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L6

Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog

R. Abbott; T. D. Abbott; S. Abraham; F. Acernese; K. AckleyORCID; A. Adams; C. Adams; R. X. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. AgatsumaORCID; N. Aggarwal; O. D. Aguiar; L. Aiello; A. Ain; P. Ajith; G. Allen; A. Allocca; P. A. Altin; A. Amato; S. AnandORCID; A. Ananyeva; S. B. Anderson; W. G. Anderson; S. V. Angelova; S. Ansoldi; J. M. Antelis; S. Antier; S. Appert; K. Arai; M. C. Araya; J. S. Areeda; M. Arène; N. Arnaud; S. M. Aronson; K. G. Arun; Y. Asali; S. Ascenzi; G. AshtonORCID; S. M. Aston; P. Astone; F. AubinORCID; P. Aufmuth; K. AultONeal; C. Austin; V. Avendano; S. Babak; F. BadaraccoORCID; M. K. M. Bader; S. Bae; A. M. Baer; S. Bagnasco; J. Baird; M. Ball; G. Ballardin; S. W. Ballmer; A. Bals; A. Balsamo; G. Baltus; S. BanagiriORCID; D. Bankar; R. S. Bankar; J. C. Barayoga; C. Barbieri; B. C. Barish; D. Barker; P. Barneo; S. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; D. Barta; J. Bartlett; I. BartosORCID; R. Bassiri; A. Basti; M. Bawaj; J. C. Bayley; M. Bazzan; B. R. Becher; B. BécsyORCID; V. M. Bedakihale; M. BejgerORCID; I. Belahcene; D. Beniwal; M. G. Benjamin; T. F. Bennett; J. D. Bentley; F. Bergamin; B. K. Berger; G. Bergmann; S. BernuzziORCID; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; R. Bhandare; A. V. Bhandari; D. BhattacharjeeORCID; J. Bidler; I. A. BilenkoORCID; G. Billingsley; R. Birney; O. Birnholtz; S. Biscans; M. Bischi; S. Biscoveanu; A. Bisht; M. Bitossi; M.-A. Bizouard; J. K. Blackburn; J. Blackman; C. D. Blair; D. G. Blair; R. M. Blair; O. Blanch; F. Bobba; N. Bode; M. BoerORCID; Y. Boetzel; G. Bogaert; M. Boldrini; F. Bondu; E. Bonilla; R. Bonnand; P. Booker; B. A. Boom; R. Bork; V. Boschi; S. Bose; V. Bossilkov; V. Boudart; Y. BouffanaisORCID; A. Bozzi; C. Bradaschia; P. R. Brady; A. Bramley; M. Branchesi; J. E. Brau; M. Breschi; T. Briant; J. H. Briggs; F. BrighentiORCID; A. Brillet; M. Brinkmann; P. Brockill; A. F. Brooks; J. Brooks; D. D. Brown; S. Brunett; G. Bruno; R. Bruntz; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; R. BuscicchioORCID; D. Buskulic; R. L. Byer; M. CaberoORCID; L. Cadonati; M. Caesar; G. Cagnoli; C. Cahillane; J. Calderón Bustillo; J. D. Callaghan; T. A. Callister; E. Calloni; J. B. Camp; M. Canepa; K. C. Cannon; H. Cao; J. Cao; G. Carapella; F. Carbognani; M. F. Carney; M. Carpinelli; G. Carullo; T. L. Carver; J. Casanueva Diaz; C. Casentini; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; P. Cerdá-Durán; E. Cesarini; W. Chaibi; K. Chakravarti; C.-L. Chan; C. Chan; K. Chandra; P. Chanial; S. Chao; P. Charlton; E. A. Chase; E. Chassande-Mottin; D. Chatterjee; D. Chattopadhyay; M. Chaturvedi; K. Chatziioannou; A. Chen; H. Y. Chen; X. Chen; Y. Chen; H.-P. Cheng; C. K. Cheong; H. Y. Chia; F. Chiadini; R. Chierici; A. Chincarini; A. Chiummo; G. Cho; H. S. Cho; M. Cho; S. Choate; N. Christensen; Q. Chu; S. Chua; K. W. Chung; S. Chung; G. Ciani; P. Ciecielag; M. Cieślar; M. Cifaldi; A. A. Ciobanu; R. Ciolfi; F. Cipriano; A. Cirone; F. Clara; E. N. Clark; J. A. Clark; L. Clarke; P. Clearwater; S. Clesse; F. Cleva; E. Coccia; P.-F. Cohadon; D. E. Cohen; M. Colleoni; C. G. Collette; C. Collins; M. Colpi; M. Constancio; L. Conti; S. J. Cooper; P. Corban; T. R. Corbitt; I. Cordero-Carrión; S. Corezzi; K. R. Corley; N. Cornish; D. Corre; A. Corsi; S. Cortese; C. A. Costa; R. Cotesta; M. W. CoughlinORCID; S. B. Coughlin; J.-P. Coulon; S. T. Countryman; P. Couvares; P. B. Covas; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; J. D. E. Creighton; T. D. Creighton; M. Croquette; S. G. Crowder; J. R. Cudell; T. J. Cullen; A. Cumming; R. Cummings; L. Cunningham; E. Cuoco; M. Curylo; T. Dal Canton; G. Dálya; A. Dana; L. M. DaneshgaranBajastani; B. D’Angelo; S. L. Danilishin; S. D’Antonio; K. Danzmann; C. Darsow-Fromm; A. Dasgupta; L. E. H. Datrier; V. Dattilo; I. Dave; M. Davier; G. S. Davies; D. Davis; E. J. Daw; R. Dean; D. DeBra; M. Deenadayalan; J. Degallaix; M. De Laurentis; S. Deléglise; V. Del Favero; F. De Lillo; N. De Lillo; W. Del Pozzo; L. M. DeMarchi; F. De Matteis; V. D’Emilio; N. Demos; T. Denker; T. Dent; A. Depasse; R. De Pietri; R. De Rosa; C. De Rossi; R. DeSalvo; O. de Varona; S. Dhurandhar; M. C. Díaz; M. Diaz-Ortiz; N. A. Didio; T. Dietrich; L. Di Fiore; C. DiFronzo; C. Di Giorgio; F. Di Giovanni; M. Di Giovanni; T. Di Girolamo; A. Di Lieto; B. Ding; S. Di Pace; I. Di Palma; F. Di Renzo; A. K. Divakarla; A. Dmitriev; Z. Doctor; L. D’Onofrio; F. Donovan; K. L. Dooley; S. Doravari; I. Dorrington; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; J.-G. Ducoin; P. Dupej; O. Durante; D. D’Urso; P.-A. Duverne; S. E. Dwyer; P. J. Easter; G. Eddolls; B. Edelman; T. B. Edo; O. Edy; A. Effler; J. Eichholz; S. S. Eikenberry; M. Eisenmann; R. A. Eisenstein; A. Ejlli; L. Errico; R. C. Essick; H. Estellés; D. Estevez; Z. B. Etienne; T. Etzel; M. Evans; T. M. Evans; B. E. Ewing; V. Fafone; H. Fair; S. Fairhurst; X. Fan; A. M. Farah; S. Farinon; B. Farr; W. M. Farr; E. J. Fauchon-Jones; M. Favata; M. Fays; M. Fazio; J. Feicht; M. M. Fejer; F. Feng; E. Fenyvesi; D. L. Ferguson; A. Fernandez-Galiana; I. Ferrante; T. A. Ferreira; F. Fidecaro; P. Figura; I. Fiori; D. Fiorucci; M. FishbachORCID; R. P. Fisher; J. M. Fishner; R. Fittipaldi; M. Fitz-Axen; V. Fiumara; R. Flaminio; E. Floden; E. Flynn; H. Fong; J. A. Font; P. W. F. Forsyth; J.-D. Fournier; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; V. Frey; P. Fritschel; V. V. Frolov; G. G. Fronzé; P. Fulda; M. Fyffe; H. A. Gabbard; B. U. Gadre; S. M. Gaebel; J. R. Gair; J. Gais; S. Galaudage; R. Gamba; D. Ganapathy; A. Ganguly; S. G. Gaonkar; B. Garaventa; C. García-Quirós; F. Garufi; B. Gateley; S. Gaudio; V. Gayathri; G. Gemme; A. Gennai; D. George; J. George; L. Gergely; S. Ghonge; Abhirup Ghosh; Archisman Ghosh; S. Ghosh; B. Giacomazzo; L. Giacoppo; J. A. Giaime; K. D. Giardina; D. R. Gibson; C. Gier; K. Gill; P. Giri; J. Glanzer; A. E. Gleckl; P. Godwin; E. Goetz; R. Goetz; N. Gohlke; B. Goncharov; G. González; A. Gopakumar; S. E. Gossan; M. Gosselin; R. Gouaty; B. Grace; A. Grado; M. Granata; V. Granata; A. Grant; S. Gras; P. Grassia; C. Gray; R. Gray; G. Greco; A. C. Green; R. Green; E. M. Gretarsson; H. L. Griggs; G. Grignani; A. Grimaldi; E. Grimes; S. J. Grimm; H. Grote; S. Grunewald; P. Gruning; J. G. Guerrero; G. M. Guidi; A. R. Guimaraes; G. Guixé; H. K. Gulati; Y. Guo; Anchal Gupta; Anuradha Gupta; P. Gupta; E. K. Gustafson; R. Gustafson; F. Guzman; L. Haegel; O. Halim; E. D. Hall; E. Z. Hamilton; G. Hammond; M. Haney; M. M. Hanke; J. Hanks; C. Hanna; O. A. Hannuksela; O. Hannuksela; H. Hansen; T. J. Hansen; J. Hanson; T. Harder; T. Hardwick; K. Haris; J. Harms; G. M. Harry; I. W. Harry; D. Hartwig; R. K. Hasskew; C.-J. Haster; K. Haughian; F. J. Hayes; J. Healy; A. Heidmann; M. C. Heintze; J. Heinze; J. Heinzel; H. Heitmann; F. Hellman; P. Hello; A. F. Helmling-Cornell; G. Hemming; M. Hendry; I. S. Heng; E. Hennes; J. Hennig; M. H. Hennig; F. Hernandez Vivanco; M. Heurs; S. Hild; P. Hill; A. S. Hines; S. Hochheim; E. Hofgard; D. Hofman; J. N. Hohmann; A. M. Holgado; N. A. Holland; I. J. Hollows; Z. J. Holmes; K. Holt; D. E. HolzORCID; P. Hopkins; C. Horst; J. Hough; E. J. Howell; C. G. Hoy; D. Hoyland; Y. Huang; M. T. Hübner; A. D. Huddart; E. A. Huerta; B. Hughey; V. Hui; S. Husa; S. H. Huttner; B. M. Hutzler; R. Huxford; T. Huynh-Dinh; B. Idzkowski; A. Iess; S. Imperato; H. Inchauspe; C. Ingram; G. Intini; M. Isi; B. R. Iyer; V. JaberianHamedan; T. Jacqmin; S. J. Jadhav; S. P. Jadhav; A. L. James; K. Jani; K. Janssens; N. N. Janthalur; P. Jaranowski; D. Jariwala; R. Jaume; A. C. Jenkins; M. Jeunon; J. Jiang; G. R. Johns; A. W. Jones; D. I. Jones; J. D. Jones; P. Jones; R. Jones; R. J. G. Jonker; L. Ju; J. Junker; C. V. Kalaghatgi; V. KalogeraORCID; B. Kamai; S. Kandhasamy; G. Kang; J. B. Kanner; S. J. Kapadia; D. P. Kapasi; C. Karathanasis; S. Karki; R. Kashyap; M. Kasprzack; W. Kastaun; S. Katsanevas; E. Katsavounidis; W. Katzman; K. Kawabe; F. Kéfélian; D. Keitel; J. S. Key; S. Khadka; F. Y. Khalili; I. Khan; S. Khan; E. A. Khazanov; N. Khetan; M. Khursheed; N. Kijbunchoo; C. Kim; G. J. Kim; J. C. Kim; K. Kim; W. S. Kim; Y.-M. Kim; C. Kimball; P. J. King; M. Kinley-Hanlon; R. Kirchhoff; J. S. Kissel; L. Kleybolte; S. Klimenko; T. D. Knowles; E. Knyazev; P. Koch; S. M. Koehlenbeck; G. Koekoek; S. Koley; M. Kolstein; K. Komori; V. Kondrashov; A. Kontos; N. Koper; M. Korobko; W. Z. Korth; M. Kovalam; D. B. Kozak; C. Krämer; V. Kringel; N. V. Krishnendu; A. Królak; G. Kuehn; A. Kumar; P. Kumar; Rahul Kumar; Rakesh Kumar; K. Kuns; S. Kwang; B. D. Lackey; D. Laghi; E. Lalande; T. L. Lam; A. Lamberts; M. Landry; B. B. Lane; R. N. Lang; J. Lange; B. Lantz; R. K. Lanza; I. La Rosa; A. Lartaux-Vollard; P. D. Lasky; M. Laxen; A. Lazzarini; C. Lazzaro; P. Leaci; S. Leavey; Y. K. Lecoeuche; H. M. Lee; H. W. Lee; J. Lee; K. Lee; J. Lehmann; E. Leon; N. Leroy; N. Letendre; Y. Levin; A. Li; J. Li; K. J. L. Li; T. G. F. Li; X. Li; F. Linde; S. D. Linker; J. N. Linley; T. B. Littenberg; J. Liu; X. Liu; M. Llorens-Monteagudo; R. K. L. Lo; A. Lockwood; L. T. London; A. Longo; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; J. D. Lough; C. O. Lousto; G. Lovelace; H. Lück; D. Lumaca; A. P. Lundgren; Y. Ma; R. Macas; M. MacInnis; D. M. Macleod; I. A. O. MacMillan; A. Macquet; I. Magaña Hernandez; F. Magaña-Sandoval; C. Magazzù; R. M. Magee; E. Majorana; I. Maksimovic; S. Maliakal; A. Malik; N. Man; V. Mandic; V. Mangano; G. L. Mansell; M. Manske; M. Mantovani; M. Mapelli; F. Marchesoni; F. Marion; S. Márka; Z. Márka; C. Markakis; A. S. Markosyan; A. Markowitz; E. Maros; A. Marquina; S. Marsat; F. Martelli; I. W. Martin; R. M. Martin; M. Martinez; V. Martinez; D. V. Martynov; H. Masalehdan; K. Mason; E. Massera; A. Masserot; T. J. Massinger; M. Masso-Reid; S. Mastrogiovanni; A. Matas; M. Mateu-Lucena; F. Matichard; M. Matiushechkina; N. Mavalvala; E. Maynard; J. J. McCann; R. McCarthy; D. E. McClelland; S. McCormick; L. McCuller; S. C. McGuire; C. McIsaac; J. McIver; D. J. McManus; T. McRae; S. T. McWilliams; D. Meacher; G. D. Meadors; M. Mehmet; A. K. Mehta; A. Melatos; D. A. Melchor; G. Mendell; A. Menendez-Vazquez; R. A. Mercer; L. Mereni; K. Merfeld; E. L. Merilh; J. D. Merritt; M. Merzougui; S. Meshkov; C. Messenger; C. Messick; R. Metzdorff; P. M. Meyers; F. Meylahn; A. Mhaske; A. Miani; H. Miao; I. Michaloliakos; C. Michel; H. Middleton; L. Milano; A. L. Miller; S. Miller; M. Millhouse; J. C. Mills; E. Milotti; M. C. Milovich-Goff; O. Minazzoli; Y. Minenkov; Ll. M. Mir; A. Mishkin; C. Mishra; T. Mistry; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; G. Mo; K. Mogushi; S. R. P. Mohapatra; S. R. Mohite; I. Molina; M. Molina-Ruiz; M. Mondin; M. Montani; C. J. Moore; D. Moraru; F. Morawski; G. Moreno; S. Morisaki; B. Mours; C. M. Mow-Lowry; S. Mozzon; F. Muciaccia; Arunava Mukherjee; D. Mukherjee; Soma Mukherjee; Subroto Mukherjee; N. Mukund; A. Mullavey; J. Munch; E. A. Muñiz; P. G. Murray; S. L. Nadji; A. Nagar; I. Nardecchia; L. Naticchioni; R. K. Nayak; B. F. Neil; J. Neilson; G. Nelemans; T. J. N. Nelson; M. Nery; A. Neunzert; K. Y. Ng; S. Ng; C. Nguyen; P. Nguyen; T. Nguyen; S. A. Nichols; S. NissankeORCID; F. Nocera; M. Noh; C. North; D. Nothard; L. K. Nuttall; J. Oberling; B. D. O’Brien; J. O’Dell; G. Oganesyan; G. H. Ogin; J. J. Oh; S. H. Oh; F. Ohme; H. Ohta; M. A. Okada; C. Olivetto; P. Oppermann; R. J. Oram; B. O’Reilly; R. G. Ormiston; N. Ormsby; L. F. Ortega; R. O’Shaughnessy; S. Ossokine; C. Osthelder; D. J. Ottaway; H. Overmier; B. J. Owen; A. E. Pace; G. Pagano; M. A. Page; G. Pagliaroli; A. Pai; S. A. Pai; J. R. Palamos; O. Palashov; C. Palomba; H. Pan; P. K. Panda; T. H. Pang; C. Pankow; F. Pannarale; B. C. Pant; F. Paoletti; A. Paoli; A. Paolone; W. Parker; D. Pascucci; A. Pasqualetti; R. Passaquieti; D. Passuello; M. Patel; B. Patricelli; E. Payne; T. C. Pechsiri; M. Pedraza; M. Pegoraro; A. Pele; S. Penn; A. Perego; C. J. Perez; C. Périgois; A. Perreca; S. Perriès; J. Petermann; D. Petterson; H. P. Pfeiffer; K. A. Pham; K. S. Phukon; O. J. Piccinni; M. Pichot; M. Piendibene; F. Piergiovanni; L. Pierini; V. Pierro; G. Pillant; F. Pilo; L. Pinard; I. M. Pinto; K. Piotrzkowski; M. Pirello; M. Pitkin; E. Placidi; W. Plastino; C. Pluchar; R. Poggiani; E. Polini; D. Y. T. Pong; S. Ponrathnam; P. Popolizio; E. K. Porter; A. Poverman; J. Powell; M. Pracchia; A. K. Prajapati; K. Prasai; R. Prasanna; G. Pratten; T. Prestegard; M. Principe; G. A. Prodi; L. Prokhorov; P. Prosposito; A. Puecher; M. Punturo; F. Puosi; P. Puppo; M. Pürrer; H. Qi; V. Quetschke; P. J. Quinonez; R. Quitzow-James; F. J. Raab; G. RaaijmakersORCID; H. Radkins; N. Radulesco; P. Raffai; H. Rafferty; S. X. Rail; S. Raja; C. Rajan; B. Rajbhandari; M. Rakhmanov; K. E. Ramirez; T. D. Ramirez; A. Ramos-Buades; J. Rana; K. Rao; P. Rapagnani; U. D. Rapol; B. Ratto; V. Raymond; M. Razzano; J. Read; T. Regimbau; L. Rei; S. Reid; D. H. Reitze; P. Rettegno; F. Ricci; C. J. Richardson; J. W. Richardson; L. Richardson; P. M. Ricker; G. Riemenschneider; K. Riles; M. Rizzo; N. A. Robertson; F. Robinet; A. Rocchi; J. A. Rocha; S. Rodriguez; R. D. Rodriguez-Soto; L. Rolland; J. G. Rollins; V. J. Roma; M. Romanelli; R. Romano; C. L. Romel; A. Romero; I. M. Romero-Shaw; J. H. Romie; S. Ronchini; C. A. Rose; D. Rose; K. Rose; M. J. B. Rosell; D. Rosińska; S. G. Rosofsky; M. P. Ross; S. Rowan; S. J. Rowlinson; Santosh Roy; Soumen Roy; P. Ruggi; K. Ryan; S. Sachdev; T. Sadecki; M. Sakellariadou; O. S. Salafia; L. Salconi; M. Saleem; A. Samajdar; E. J. Sanchez; J. H. Sanchez; L. E. Sanchez; N. Sanchis-Gual; J. R. Sanders; K. A. Santiago; E. Santos; T. R. Saravanan; N. Sarin; B. Sassolas; B. S. Sathyaprakash; O. Sauter; R. L. Savage; V. Savant; D. Sawant; S. Sayah; D. Schaetzl; P. Schale; M. Scheel; J. Scheuer; A. Schindler-Tyka; P. Schmidt; R. Schnabel; R. M. S. Schofield; A. Schönbeck; E. Schreiber; B. W. Schulte; B. F. Schutz; O. Schwarm; E. Schwartz; J. Scott; S. M. Scott; M. Seglar-Arroyo; E. Seidel; D. Sellers; A. S. Sengupta; N. Sennett; D. Sentenac; V. Sequino; A. Sergeev; Y. Setyawati; T. Shaffer; M. S. Shahriar; S. Sharifi; A. Sharma; P. Sharma; P. Shawhan; H. Shen; M. Shikauchi; R. Shink; D. H. Shoemaker; D. M. Shoemaker; K. Shukla; S. ShyamSundar; M. Sieniawska; D. Sigg; L. P. Singer; D. Singh; N. Singh; A. Singha; A. Singhal; A. M. Sintes; V. Sipala; V. Skliris; B. J. J. Slagmolen; T. J. Slaven-Blair; J. Smetana; J. R. Smith; R. J. E. Smith; S. N. Somala; E. J. Son; S. Soni; B. Sorazu; V. Sordini; F. Sorrentino; N. Sorrentino; R. Soulard; T. Souradeep; E. Sowell; A. P. Spencer; M. Spera; A. K. Srivastava; V. Srivastava; K. Staats; C. Stachie; D. A. Steer; M. Steinke; J. Steinlechner; S. Steinlechner; D. Steinmeyer; S. P. Stevenson; G. Stolle-McAllister; D. J. Stops; M. Stover; K. A. Strain; G. Stratta; A. Strunk; R. Sturani; A. L. Stuver; J. Südbeck; S. Sudhagar; V. Sudhir; H. G. Suh; T. Z. Summerscales; H. Sun; L. Sun; S. Sunil; A. Sur; J. Suresh; P. J. Sutton; B. L. Swinkels; M. J. Szczepańczyk; M. Tacca; S. C. Tait; C. Talbot; A. J. Tanasijczuk; D. B. Tanner; D. Tao; A. Tapia; E. N. Tapia San Martin; J. D. Tasson; R. Taylor; R. Tenorio; L. Terkowski; M. P. Thirugnanasambandam; L. Thomas; M. Thomas; P. Thomas; J. E. Thompson; S. R. Thondapu; K. A. Thorne; E. Thrane; Shubhanshu Tiwari; Srishti Tiwari; V. Tiwari; K. Toland; A. E. Tolley; M. Tonelli; Z. Tornasi; A. Torres-Forné; C. I. Torrie; I. Tosta e Melo; D. Töyrä; A. T. Tran; A. Trapananti; F. Travasso; G. Traylor; M. C. Tringali; A. Tripathee; A. Trovato; R. J. Trudeau; D. S. Tsai; K. W. Tsang; M. Tse; R. Tso; L. Tsukada; D. Tsuna; T. Tsutsui; M. Turconi; A. S. Ubhi; R. P. Udall; K. Ueno; D. Ugolini; C. S. Unnikrishnan; A. L. Urban; S. A. Usman; A. C. Utina; H. Vahlbruch; G. Vajente; A. Vajpeyi; G. Valdes; M. Valentini; V. Valsan; N. van Bakel; M. van Beuzekom; J. F. J. van den Brand; C. Van Den Broeck; D. C. Vander-Hyde; L. van der Schaaf; J. V. van Heijningen; M. Vardaro; A. F. Vargas; V. Varma; S. Vass; M. Vasúth; A. Vecchio; G. Vedovato; J. Veitch; P. J. Veitch; K. Venkateswara; J. Venneberg; G. Venugopalan; D. Verkindt; Y. Verma; D. Veske; F. Vetrano; A. Viceré; A. D. Viets; V. Villa-Ortega; J.-Y. Vinet; S. Vitale; T. Vo; H. Vocca; C. Vorvick; S. P. Vyatchanin; A. R. Wade; L. E. Wade; M. Wade; R. C. Walet; M. Walker; G. S. Wallace; L. Wallace; S. Walsh; J. Z. Wang; S. Wang; W. H. Wang; Y. F. Wang; R. L. Ward; J. Warner; M. Was; N. Y. Washington; J. Watchi; B. Weaver; L. Wei; M. Weinert; A. J. Weinstein; R. Weiss; F. Wellmann; L. Wen; P. Weßels; J. W. Westhouse; K. Wette; J. T. Whelan; D. D. White; L. V. White; B. F. Whiting; C. Whittle; D. M. Wilken; D. Williams; M. J. Williams; A. R. Williamson; J. L. Willis; B. Willke; D. J. Wilson; M. H. Wimmer; W. Winkler; C. C. Wipf; G. Woan; J. Woehler; J. K. Wofford; I. C. F. Wong; J. Wrangel; J. L. Wright; D. S. Wu; D. M. Wysocki; L. Xiao; H. Yamamoto; L. Yang; Y. Yang; Z. Yang; M. J. Yap; D. W. Yeeles; A. Yoon; Hang Yu; Haocun Yu; S. H. R. Yuen; A. Zadrożny; M. Zanolin; T. Zelenova; J.-P. Zendri; M. Zevin; J. Zhang; L. Zhang; R. Zhang; T. Zhang; C. Zhao; G. Zhao; M. Zhou; Z. Zhou; X. J. Zhu; A. B. Zimmerman; M. E. Zucker; J. Zweizig

<jats:title>Abstract</jats:title> <jats:p>We report on the population of 47 compact binary mergers detected with a false-alarm rate of &lt;<jats:inline-formula> <jats:tex-math> <?CDATA $1\,{\mathrm{yr}}^{-1}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> in the second LIGO–Virgo Gravitational-Wave Transient Catalog. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, the primary mass spectrum contains structure beyond a power law with a sharp high-mass cutoff; it is more consistent with a broken power law with a break at <jats:inline-formula> <jats:tex-math> <?CDATA ${39.7}_{-9.1}^{+20.3}\,\,{M}_{\odot }$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> or a power law with a Gaussian feature peaking at <jats:inline-formula> <jats:tex-math> <?CDATA ${33.1}_{-5.6}^{+4.0}\,\,{M}_{\odot }$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> (90% credible interval). While the primary mass distribution must extend to <jats:inline-formula> <jats:tex-math> <?CDATA $\sim 65\,{M}_{\odot }$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> or beyond, only <jats:inline-formula> <jats:tex-math> <?CDATA ${2.9}_{-1.7}^{+3.5} \% $?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn5.gif" xlink:type="simple" /> </jats:inline-formula> of systems have primary masses greater than <jats:inline-formula> <jats:tex-math> <?CDATA $45\,{M}_{\odot }$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn6.gif" xlink:type="simple" /> </jats:inline-formula>. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, <jats:inline-formula> <jats:tex-math> <?CDATA $12$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn7.gif" xlink:type="simple" /> </jats:inline-formula>%–<jats:inline-formula> <jats:tex-math> <?CDATA $44$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn8.gif" xlink:type="simple" /> </jats:inline-formula>% of BBH systems have spins tilted by more than 90°, giving rise to a negative effective inspiral spin parameter, <jats:inline-formula> <jats:tex-math> <?CDATA ${\chi }_{\mathrm{eff}}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn9.gif" xlink:type="simple" /> </jats:inline-formula>. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBHs with nonvanishing <jats:inline-formula> <jats:tex-math> <?CDATA $| {\chi }_{\mathrm{eff}}| \gt 0.01$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn10.gif" xlink:type="simple" /> </jats:inline-formula> are dynamically assembled. Third, we estimate merger rates, finding <jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal R }}_{\mathrm{BBH}}={23.9}_{-8.6}^{+14.3}\,\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn11.gif" xlink:type="simple" /> </jats:inline-formula> for BBHs and <jats:inline-formula> <jats:tex-math> <?CDATA ${{ \mathcal R }}_{\mathrm{BNS}}={320}_{-240}^{+490}\,\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn12.gif" xlink:type="simple" /> </jats:inline-formula> for binary neutron stars. We find that the BBH rate likely increases with redshift (<jats:inline-formula> <jats:tex-math> <?CDATA $85 \% $?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn13.gif" xlink:type="simple" /> </jats:inline-formula> credibility) but not faster than the star formation rate (<jats:inline-formula> <jats:tex-math> <?CDATA $86 \% $?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabe949ieqn14.gif" xlink:type="simple" /> </jats:inline-formula> credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L7

A Unified Model of Solar Prominence Formation

C. J. Huang; J. H. GuoORCID; Y. W. NiORCID; A. A. Xu; P. F. ChenORCID

<jats:title>Abstract</jats:title> <jats:p>Several mechanisms have been proposed to account for the formation of solar prominences or filaments, among which direct injection and evaporation–condensation models are the two most popular ones. In the direct injection model, cold plasma is ejected from the chromosphere into the corona along magnetic field lines; in the evaporation–condensation model, the cold chromospheric plasma is heated to over a million degrees and is evaporated into the corona, where the accumulated plasma finally reaches thermal instability or nonequilibrium so as to condensate to cold prominences. In this paper, we try to unify the two mechanisms: The essence of filament formation is the localized heating in the chromosphere. If the heating happens in the lower chromosphere, the enhanced gas pressure pushes the cold plasma in the upper chromosphere to move up to the corona, such a process is manifested as the direct injection model. If the heating happens in the upper chromosphere, the local plasma is heated to 1–2 million degrees, and is evaporated into the corona. Later, the plasma condensates to form a prominence. Such a process is manifested as the evaporation–condensation model. With radiative hydrodynamic simulations we confirmed that the two widely accepted formation mechanisms of solar prominences can really be unified in such a single framework. A particular case is also found where both injection and evaporation–condensation processes occur together.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L8