Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Gamma-Ray and Radio Background Constraints on Cosmic Rays in Milky Way Circumgalactic Medium

Ranita JanaORCID; Manami RoyORCID; Biman B. NathORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L9

The Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light

Mathew S. MadhavacherilORCID; Cristóbal SifónORCID; Nicholas Battaglia; Simone Aiola; Stefania Amodeo; Jason E. Austermann; James A. Beall; Daniel T. Becker; J. Richard Bond; Erminia Calabrese; Steve K. ChoiORCID; Edward V. Denison; Mark J. Devlin; Simon R. DickerORCID; Shannon M. Duff; Adriaan J. Duivenvoorden; Jo Dunkley; Rolando Dünner; Simone FerraroORCID; Patricio A. Gallardo; Yilun Guan; Dongwon Han; J. Colin Hill; Gene C. Hilton; Matt HiltonORCID; Johannes Hubmayr; Kevin M. HuffenbergerORCID; John P. HughesORCID; Brian J. Koopman; Arthur KosowskyORCID; Jeff Van Lanen; Eunseong Lee; Thibaut Louis; Amanda MacInnis; Jeffrey McMahon; Kavilan Moodley; Sigurd Naess; Toshiya NamikawaORCID; Federico Nati; Laura Newburgh; Michael D. Niemack; Lyman A. Page; Bruce Partridge; Frank J. Qu; Naomi C. Robertson; Maria Salatino; Emmanuel Schaan; Alessandro Schillaci; Benjamin L. Schmitt; Neelima SehgalORCID; Blake D. Sherwin; Sara M. Simon; David N. SpergelORCID; Suzanne Staggs; Emilie R. Storer; Joel N. Ullom; Leila R. Vale; Alexander van Engelen; Eve M. Vavagiakis; Edward J. WollackORCID; Zhilei Xu

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L13

HAWC and Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341

A. Albert; R. Alfaro; C. Alvarez; J. R. Angeles Camacho; M. Araya; J. C. Arteaga-Velázquez; K. P. Arunbabu; D. Avila Rojas; H. A. Ayala Solares; V. BaghmanyanORCID; E. Belmont-Moreno; C. Brisbois; K. S. Caballero-Mora; A. Carramiñana; S. Casanova; U. Cotti; E. De la Fuente; C. de León; R. Diaz Hernandez; B. L. Dingus; M. A. DuVernois; M. Durocher; J. C. Díaz-VélezORCID; C. Espinoza; H. FleischhackORCID; N. FraijaORCID; A. Galván-Gámez; D. Garcia; J. A. García-González; F. Garfias; M. M. GonzálezORCID; J. A. Goodman; J. P. Harding; B. Hona; D. Huang; F. Hueyotl-Zahuantitla; P. Hüntemeyer; A. Iriarte; A. Jardin-Blicq; V. JoshiORCID; H. León Vargas; J. T. Linnemann; A. L. LonginottiORCID; R. López-Coto; G. Luis-Raya; J. Lundeen; K. MaloneORCID; O. Martinez; J. Martínez-Castro; J. A. Matthews; P. Miranda-Romagnoli; E. Moreno; M. Mostafá; L. Nellen; M. U. NisaORCID; R. Noriega-Papaqui; N. OmodeiORCID; A. Peisker; E. G. Pérez-Pérez; C. D. RhoORCID; D. Rosa-GonzálezORCID; F. Salesa Greus; A. Sandoval; M. Schneider; R. W. Springer; K. Tollefson; I. Torres; R. Torres-Escobedo; F. Ureña-Mena; L. Villaseñor; T. Weisgarber; E. Willox; A. Zepeda; H. Zhou;

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L14

A Magnetized, Moon-forming Giant Impact

P. D. MullenORCID; C. F. GammieORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L15

The First Robust Constraints on the Relationship between Dust-to-gas Ratio and Metallicity in Luminous Star-forming Galaxies at High Redshift

Alice E. ShapleyORCID; Fergus Cullen; James S. Dunlop; Ross J. McLure; Mariska KriekORCID; Naveen A. ReddyORCID; Ryan L. SandersORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L16

Effects of Spin on Constraining the Seeds and Growth of ≳109 M Supermassive Black Holes in z > 6.5 Quasars

Xiaoxia ZhangORCID; Youjun LuORCID; Taotao FangORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L18

Observable Signatures of the Ejection Speed of Interstellar Objects from Their Birth Systems

Amir SirajORCID; Abraham LoebORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L20

Interaction of Magnetic Fields with a Vortex Tube at Solar Subgranular Scale

C. E. FischerORCID; G. VigeeshORCID; P. LindnerORCID; J. M. Borrero; F. CalvoORCID; O. SteinerORCID

<jats:title>Abstract</jats:title> <jats:p>Using high-resolution spectropolarimetric data recorded with the Swedish 1 m Solar Telescope, we have identified several instances of granular lanes traveling into granules. These are believed to be the observational signature of underlying tubes of vortical flow with their axis oriented parallel to the solar surface. Associated with these horizontal vortex tubes, we detect in some cases a significant signal in linear polarization, located at the trailing dark edge of the granular lane. The linear polarization appears at a later stage of the granular lane development, and is flanked by patches of circular polarization. Stokes inversions show that the elongated patch of linear polarization signal arises from the horizontal magnetic field aligned with the granular lane. We analyze snapshots of a magnetohydrodynamic numerical simulation and find cases in which the horizontal vortex tube of the granular lane redistributes and transports the magnetic field to the solar surface causing a polarimetric signature similar to what is observed. We thus witness a mechanism capable of transporting magnetic flux to the solar surface within granules. This mechanism is probably an important component of the small-scale dynamo supposedly acting at the solar surface and generating the quiet-Sun magnetic field.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L10

A Terrestrial-mass Rogue Planet Candidate Detected in the Shortest-timescale Microlensing Event

Przemek MrózORCID; Radosław PoleskiORCID; Andrew Gould; Andrzej UdalskiORCID; Takahiro Sumi; Michał K. SzymańskiORCID; Igor SoszyńskiORCID; Paweł PietrukowiczORCID; Szymon KozłowskiORCID; Jan SkowronORCID; Krzysztof UlaczykORCID; Michael D. AlbrowORCID; Sun-Ju ChungORCID; Cheongho HanORCID; Kyu-Ha HwangORCID; Youn Kil Jung; Hyoun-Woo Kim; Yoon-Hyun RyuORCID; In-Gu ShinORCID; Yossi ShvartzvaldORCID; Jennifer C. YeeORCID; Weicheng ZangORCID; Sang-Mok Cha; Dong-Jin Kim; Seung-Lee Kim; Chung-Uk Lee; Dong-Joo Lee; Yongseok Lee; Byeong-Gon Park; Richard W. PoggeORCID

<jats:title>Abstract</jats:title> <jats:p>Some low-mass planets are expected to be ejected from their parent planetary systems during early stages of planetary system formation. According to planet formation theories, such as the core accretion theory, typical masses of ejected planets should be between 0.3 and 1.0 <jats:italic>M</jats:italic> <jats:sub>⊕</jats:sub>. Although in practice such objects do not emit any light, they may be detected using gravitational microlensing via their light-bending gravity. Microlensing events due to terrestrial-mass rogue planets are expected to have extremely small angular Einstein radii (≲1 <jats:italic>μ</jats:italic>as) and extremely short timescales (≲0.1 day). Here, we present the discovery of the shortest-timescale microlensing event, OGLE-2016-BLG-1928, identified to date (<jats:inline-formula> <jats:tex-math> <?CDATA ${t}_{{\rm{E}}}\approx 0.0288\,\mathrm{day}=41.5\,\mathrm{minutes}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabbfadieqn1.gif" xlink:type="simple" /> </jats:inline-formula>). Thanks to the detection of finite-source effects in the light curve of the event, we were able to measure the angular Einstein radius of the lens <jats:inline-formula> <jats:tex-math> <?CDATA ${\theta }_{{\rm{E}}}=0.842\pm 0.064$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabbfadieqn2.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>μ</jats:italic>as, making the event the most extreme short-timescale microlens discovered to date. Depending on its unknown distance, the lens may be a Mars- to Earth-mass object, with the former possibility favored by the Gaia proper motion measurement of the source. The planet may be orbiting a star but we rule out the presence of stellar companions up to the projected distance of ∼8.0 au from the planet. Our discovery demonstrates that terrestrial-mass free-floating planets can be detected and characterized using microlensing.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L11

Mirror Mode Waves Immersed in Magnetic Reconnection

L.-N. HauORCID; G.-W. ChenORCID; C.-K. ChangORCID

<jats:title>Abstract</jats:title> <jats:p>Mirror mode waves with anticorrelated density and magnetic field are widely observed in the heliosphere. This paper presents the first evidence of mirror mode waves occurring in the vicinity of a magnetic reconnection site (X-line) at the interface between the solar wind and Earth’s magnetosphere based on the analyses of two Magnetospheric Multiscale (MMS) crossing events along with the Grad–Shafranov (GS) reconstruction model with temperature anisotropy. The GS scheme solves the steady two-dimensional MHD equations in the frame of references moving with the plasma by using the spacecraft measurements. Both events have mirror type of pressure anisotropy and correspond, respectively, to the symmetric and asymmetric Harris type current sheets with the total thermal and magnetic field pressures being approximately constant. The GS reconstruction results show the magnetic reconnection with X line geometry associated with the mirror mode structures on the spatial lengths of 170 ∼ 370 km or 1.3 ∼ 3 ion gyroradius. The coexistence of mirror waves and magnetic reconnection provides the first observational evidence for the prior theoretical prediction of mixed tearing and mirror instabilities in plasma current sheets with temperature anisotropy.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L12