Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Into the UV: The Atmosphere of the Hot Jupiter HAT-P-41b Revealed

N. K. LewisORCID; H. R. WakefordORCID; R. J. MacDonaldORCID; J. M. GoyalORCID; D. K. SingORCID; J. BarstowORCID; D. PowellORCID; T. KatariaORCID; I. MishraORCID; M. S. MarleyORCID; N. E. BatalhaORCID; J. I. MosesORCID; P. GaoORCID; T. J. WilsonORCID; K. L. ChubbORCID; T. Mikal-EvansORCID; N. NikolovORCID; N. Pirzkal; J. J. Spake; K. B. StevensonORCID; J. ValentiORCID; X. Zhang

<jats:title>Abstract</jats:title> <jats:p>For solar system objects, ultraviolet spectroscopy has been critical in identifying sources of stratospheric heating and measuring the abundances of a variety of hydrocarbon and sulfur-bearing species, produced via photochemical mechanisms, as well as oxygen and ozone. To date, fewer than 20 exoplanets have been probed in this critical wavelength range (0.2–0.4 <jats:italic>μ</jats:italic>m). Here we use data from Hubble’s newly implemented WFC3 UVIS G280 grism to probe the atmosphere of the hot Jupiter HAT-P-41b in the ultraviolet through optical in combination with observations at infrared wavelengths. We analyze and interpret HAT-P-41b’s 0.2–5.0 <jats:italic>μ</jats:italic>m transmission spectrum using a broad range of methodologies including multiple treatments of data systematics as well as comparisons with atmospheric forward, cloud microphysical, and multiple atmospheric retrieval models. Although some analysis and interpretation methods favor the presence of clouds or potentially a combination of Na, VO, AlO, and CrH to explain the ultraviolet through optical portions of HAT-P-41b’s transmission spectrum, we find that the presence of a significant H<jats:sup>−</jats:sup> opacity provides the most robust explanation. We obtain a constraint for the abundance of H<jats:sup>−</jats:sup>, <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}({{\rm{H}}}^{-})=-8.65\pm 0.62$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabb77fieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, in HAT-P-41b’s atmosphere, which is several orders of magnitude larger than predictions from equilibrium chemistry for a ∼1700–1950 K hot Jupiter. We show that a combination of photochemical and collisional processes on hot hydrogen-dominated exoplanets can readily supply the necessary amount of H<jats:sup>−</jats:sup> and suggest that such processes are at work in HAT-P-41b and the atmospheres of many other hot Jupiters.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L19

The X-Ray Reactivation of the Radio Bursting Magnetar SGR J1935+2154

A. BorgheseORCID; F. Coti ZelatiORCID; N. ReaORCID; P. EspositoORCID; G. L. IsraelORCID; S. MereghettiORCID; A. TiengoORCID

<jats:title>Abstract</jats:title> <jats:p>A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthening the connection between magnetars and fast radio bursts. We report on the X-ray monitoring of SGR J1935+2154 from ∼3 days prior to ∼3 weeks after its reactivation, using Swift, the Nuclear Spectroscopic Telescope Array (NuSTAR), and the Neutron Star Interior Composition Explorer (NICER). We detected X-ray pulsations in the NICER and NuSTAR observations, and constrained the spin period derivative to <jats:inline-formula> <jats:tex-math> <?CDATA $| \dot{P}| \lt 3\times {10}^{-11}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlaba82aieqn1.gif" xlink:type="simple" /> </jats:inline-formula> s s<jats:sup>−1</jats:sup> (3<jats:italic>σ</jats:italic> c.l.). The pulse profile showed a variable shape switching between single and double-peaked as a function of time and energy. The pulsed fraction decreased from ∼34% to ∼11% (5–10 keV) over ∼10 days. The X-ray spectrum was well fit by an absorbed blackbody model with temperature decreasing from <jats:italic>kT</jats:italic> <jats:sub>BB</jats:sub> ∼ 1.6 to 0.45–0.6 keV, plus a nonthermal power-law component (Γ ∼ 1.2) observed up to ∼25 keV with NuSTAR. The 0.3–10 keV X-ray luminosity increased in less than 4 days from <jats:inline-formula> <jats:tex-math> <?CDATA $\sim 6\times {10}^{33}{d}_{6.6}^{2}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlaba82aieqn2.gif" xlink:type="simple" /> </jats:inline-formula> erg s<jats:sup>−1</jats:sup> to about <jats:inline-formula> <jats:tex-math> <?CDATA $3\times {10}^{35}{d}_{6.6}^{2}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlaba82aieqn3.gif" xlink:type="simple" /> </jats:inline-formula> erg s<jats:sup>−1</jats:sup> and then decreased again to <jats:inline-formula> <jats:tex-math> <?CDATA $2.5\times {10}^{34}{d}_{6.6}^{2}$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlaba82aieqn4.gif" xlink:type="simple" /> </jats:inline-formula> erg s<jats:sup>−1</jats:sup> over the following 3 weeks of the outburst, where <jats:italic>d</jats:italic> <jats:sub>6.6</jats:sub> is the source distance in units of 6.6 kpc. We also detected several X-ray bursts, with properties typical of short magnetar bursts.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L2

Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

R. Abbott; T. D. Abbott; S. Abraham; F. Acernese; K. Ackley; A. Adams; C. Adams; R. X. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; L. Aiello; A. Ain; P. Ajith; G. Allen; A. Allocca; P. A. Altin; A. Amato; S. Anand; A. Ananyeva; S. B. Anderson; W. G. Anderson; S. V. Angelova; S. Ansoldi; J. M. Antelis; S. Antier; S. Appert; K. Arai; M. C. Araya; J. S. Areeda; M. Arène; N. Arnaud; S. M. Aronson; K. G. Arun; Y. Asali; S. Ascenzi; G. Ashton; S. M. Aston; P. Astone; F. Aubin; P. Aufmuth; K. AultONeal; C. Austin; V. Avendano; S. Babak; F. Badaracco; M. K. M. Bader; S. Bae; A. M. Baer; S. Bagnasco; M. Bailes; J. Baird; M. Ball; G. Ballardin; S. W. Ballmer; A. Bals; A. Balsamo; G. Baltus; S. Banagiri; D. Bankar; R. S. Bankar; J. C. Barayoga; C. Barbieri; B. C. Barish; D. Barker; P. Barneo; S. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; D. Barta; J. Bartlett; I. Bartos; R. Bassiri; A. Basti; M. Bawaj; J. C. Bayley; M. Bazzan; B. R. Becher; B. Bécsy; V. M. Bedakihale; M. Bejger; I. Belahcene; D. Beniwal; M. G. Benjamin; T. F. Bennett; J. D. Bentley; F. Bergamin; B. K. Berger; G. Bergmann; S. Bernuzzi; D. Bersanetti; A. Bertolini; J. Betzwieser; R. Bhandare; A. V. Bhandari; D. Bhattacharjee; J. Bidler; I. A. Bilenko; G. Billingsley; R. Birney; O. Birnholtz; S. Biscans; M. Bischi; S. Biscoveanu; A. Bisht; M. Bitossi; M.-A. Bizouard; J. K. Blackburn; J. Blackman; C. D. Blair; D. G. Blair; R. M. Blair; O. Blanch; F. Bobba; N. Bode; M. Boer; Y. Boetzel; G. Bogaert; M. Boldrini; F. Bondu; R. Bonnand; P. Booker; B. A. Boom; R. Bork; V. Boschi; S. Bose; V. Bossilkov; V. Boudart; Y. Bouffanais; A. Bozzi; C. Bradaschia; P. R. Brady; A. Bramley; M. Branchesi; J. E. Brau; M. Breschi; T. Briant; J. H. Briggs; F. Brighenti; A. Brillet; M. Brinkmann; P. Brockill; A. F. Brooks; J. Brooks; D. D. Brown; S. Brunett; G. Bruno; R. Bruntz; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; R. L. Byer; M. Cabero; L. Cadonati; M. Caesar; G. Cagnoli; C. Cahillane; J. Calderón Bustillo; J. D. Callaghan; T. A. Callister; E. Calloni; J. B. Camp; M. Canepa; K. C. Cannon; H. Cao; J. Cao; G. Carapella; F. Carbognani; M. F. Carney; M. Carpinelli; G. Carullo; T. L. Carver; J. Casanueva Diaz; C. Casentini; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; P. Cerdá-Durán; E. Cesarini; W. Chaibi; K. Chakravarti; C.-L. Chan; C. Chan; K. Chandra; P. Chanial; S. Chao; P. Charlton; E. A. Chase; E. Chassande-Mottin; D. Chatterjee; M. Chaturvedi; A. Chen; H. Y. Chen; X. Chen; Y. Chen; H.-P. Cheng; C. K. Cheong; H. Y. Chia; F. Chiadini; R. Chierici; A. Chincarini; A. Chiummo; G. Cho; H. S. Cho; M. Cho; S. Choate; N. Christensen; Q. Chu; S. Chua; K. W. Chung; S. Chung; G. Ciani; P. Ciecielag; M. Cieślar; M. Cifaldi; A. A. Ciobanu; R. Ciolfi; F. Cipriano; A. Cirone; F. Clara; E. N. Clark; J. A. Clark; L. Clarke; P. Clearwater; S. Clesse; F. Cleva; E. Coccia; P.-F. Cohadon; D. E. Cohen; M. Colleoni; C. G. Collette; C. Collins; M. Colpi; M. Constancio; L. Conti; S. J. Cooper; P. Corban; T. R. Corbitt; I. Cordero-Carrión; S. Corezzi; K. R. Corley; N. Cornish; D. Corre; A. Corsi; S. Cortese; C. A. Costa; R. Cotesta; M. W. Coughlin; S. B. Coughlin; J.-P. Coulon; S. T. Countryman; P. Couvares; P. B. Covas; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; J. D. E. Creighton; T. D. Creighton; M. Croquette; S. G. Crowder; J. R. Cudell; T. J. Cullen; A. Cumming; R. Cummings; L. Cunningham; E. Cuoco; M. Curylo; T. Dal Canton; G. Dálya; A. Dana; L. M. DaneshgaranBajastani; B. D’Angelo; S. L. Danilishin; S. D’Antonio; K. Danzmann; C. Darsow-Fromm; A. Dasgupta; L. E. H. Datrier; V. Dattilo; I. Dave; M. Davier; G. S. Davies; D. Davis; E. J. Daw; R. Dean; D. DeBra; M. Deenadayalan; J. Degallaix; M. De Laurentis; S. Deléglise; V. Del Favero; N. De Lillo; W. Del Pozzo; L. M. DeMarchi; F. De Matteis; V. D’Emilio; N. Demos; T. Denker; T. Dent; A. Depasse; R. De Pietri; R. De Rosa; C. De Rossi; R. DeSalvo; O. de Varona; S. Dhurandhar; M. C. Díaz; M. Diaz-Ortiz; N. A. Didio; T. Dietrich; L. Di Fiore; C. DiFronzo; C. Di Giorgio; F. Di Giovanni; M. Di Giovanni; T. Di Girolamo; A. Di Lieto; B. Ding; S. Di Pace; I. Di Palma; F. Di Renzo; A. K. Divakarla; A. Dmitriev; Z. Doctor; L. D’Onofrio; F. Donovan; K. L. Dooley; S. Doravari; I. Dorrington; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; J.-G. Ducoin; P. Dupej; O. Durante; D. D’Urso; P.-A. Duverne; S. E. Dwyer; P. J. Easter; G. Eddolls; B. Edelman; T. B. Edo; O. Edy; A. Effler; J. Eichholz; S. S. Eikenberry; M. Eisenmann; R. A. Eisenstein; A. Ejlli; L. Errico; R. C. Essick; H. Estellés; D. Estevez; Z. B. Etienne; T. Etzel; M. Evans; T. M. Evans; B. E. Ewing; V. Fafone; H. Fair; S. Fairhurst; X. Fan; A. M. Farah; S. Farinon; B. Farr; W. M. Farr; E. J. Fauchon-Jones; M. Favata; M. Fays; M. Fazio; J. Feicht; M. M. Fejer; F. Feng; E. Fenyvesi; D. L. Ferguson; A. Fernandez-Galiana; I. Ferrante; T. A. Ferreira; F. Fidecaro; P. Figura; I. Fiori; D. Fiorucci; M. Fishbach; R. P. Fisher; J. M. Fishner; R. Fittipaldi; M. Fitz-Axen; V. Fiumara; R. Flaminio; E. Floden; E. Flynn; H. Fong; J. A. Font; P. W. F. Forsyth; J.-D. Fournier; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; V. Frey; P. Fritschel; V. V. Frolov; G. G. Fronzé; P. Fulda; M. Fyffe; H. A. Gabbard; B. U. Gadre; S. M. Gaebel; J. R. Gair; J. Gais; S. Galaudage; R. Gamba; D. Ganapathy; A. Ganguly; S. G. Gaonkar; B. Garaventa; C. García-Quirós; F. Garufi; B. Gateley; S. Gaudio; V. Gayathri; G. Gemme; A. Gennai; D. George; J. George; L. Gergely; S. Ghonge; Abhirup Ghosh; Archisman Ghosh; S. Ghosh; B. Giacomazzo; L. Giacoppo; J. A. Giaime; K. D. Giardina; D. R. Gibson; C. Gier; K. Gill; P. Giri; J. Glanzer; A. E. Gleckl; P. Godwin; E. Goetz; R. Goetz; N. Gohlke; B. Goncharov; G. González; A. Gopakumar; S. E. Gossan; M. Gosselin; R. Gouaty; B. Grace; A. Grado; M. Granata; V. Granata; A. Grant; S. Gras; P. Grassia; C. Gray; R. Gray; G. Greco; A. C. Green; R. Green; E. M. Gretarsson; H. L. Griggs; G. Grignani; A. Grimaldi; E. Grimes; S. J. Grimm; H. Grote; S. Grunewald; P. Gruning; J. G. Guerrero; G. M. Guidi; A. R. Guimaraes; G. Guixé; H. K. Gulati; Y. Guo; Anchal Gupta; Anuradha Gupta; P. Gupta; E. K. Gustafson; R. Gustafson; F. Guzman; L. Haegel; O. Halim; E. D. Hall; E. Z. Hamilton; G. Hammond; M. Haney; M. M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; O. A. Hannuksela; O. Hannuksela; H. Hansen; T. J. Hansen; J. Hanson; T. Harder; T. Hardwick; K. Haris; J. Harms; G. M. Harry; I. W. Harry; D. Hartwig; R. K. Hasskew; C.-J. Haster; K. Haughian; F. J. Hayes; J. Healy; A. Heidmann; M. C. Heintze; J. Heinze; J. Heinzel; H. Heitmann; F. Hellman; P. Hello; A. F. Helmling-Cornell; G. Hemming; M. Hendry; I. S. Heng; E. Hennes; J. Hennig; M. H. Hennig; F. Hernandez Vivanco; M. Heurs; S. Hild; P. Hill; A. S. Hines; S. Hochheim; E. Hofgard; D. Hofman; J. N. Hohmann; A. M. Holgado; N. A. Holland; I. J. Hollows; Z. J. Holmes; K. Holt; D. E. Holz; P. Hopkins; C. Horst; J. Hough; E. J. Howell; C. G. Hoy; D. Hoyland; Y. Huang; M. T. Hübner; A. D. Huddart; E. A. Huerta; B. Hughey; V. Hui; S. Husa; S. H. Huttner; B. M. Hutzler; R. Huxford; T. Huynh-Dinh; B. Idzkowski; A. Iess; S. Imperato; H. Inchauspe; C. Ingram; G. Intini; M. Isi; B. R. Iyer; V. JaberianHamedan; T. Jacqmin; S. J. Jadhav; S. P. Jadhav; A. L. James; K. Jani; K. Janssens; N. N. Janthalur; P. Jaranowski; D. Jariwala; R. Jaume; A. C. Jenkins; M. Jeunon; J. Jiang; G. R. Johns; A. W. Jones; D. I. Jones; J. D. Jones; P. Jones; R. Jones; R. J. G. Jonker; L. Ju; J. Junker; C. V. Kalaghatgi; V. Kalogera; B. Kamai; S. Kandhasamy; G. Kang; J. B. Kanner; S. J. Kapadia; D. P. Kapasi; C. Karathanasis; S. Karki; R. Kashyap; M. Kasprzack; W. Kastaun; S. Katsanevas; E. Katsavounidis; W. Katzman; K. Kawabe; F. Kéfélian; D. Keitel; J. S. Key; S. Khadka; F. Y. Khalili; I. Khan; S. Khan; E. A. Khazanov; N. Khetan; M. Khursheed; N. Kijbunchoo; C. Kim; G. J. Kim; J. C. Kim; K. Kim; W. Kim; W. S. Kim; Y.-M. Kim; C. Kimball; P. J. King; M. Kinley-Hanlon; R. Kirchhoff; J. S. Kissel; L. Kleybolte; S. Klimenko; T. D. Knowles; E. Knyazev; P. Koch; S. M. Koehlenbeck; G. Koekoek; S. Koley; M. Kolstein; K. Komori; V. Kondrashov; A. Kontos; N. Koper; M. Korobko; W. Z. Korth; M. Kovalam; D. B. Kozak; C. Krämer; V. Kringel; N. V. Krishnendu; A. Królak; G. Kuehn; A. Kumar; P. Kumar; Rahul Kumar; Rakesh Kumar; K. Kuns; S. Kwang; B. D. Lackey; D. Laghi; E. Lalande; T. L. Lam; A. Lamberts; M. Landry; B. B. Lane; R. N. Lang; J. Lange; B. Lantz; R. K. Lanza; I. La Rosa; A. Lartaux-Vollard; P. D. Lasky; M. Laxen; A. Lazzarini; C. Lazzaro; P. Leaci; S. Leavey; Y. K. Lecoeuche; H. M. Lee; H. W. Lee; J. Lee; K. Lee; J. Lehmann; E. Leon; N. Leroy; N. Letendre; Y. Levin; A. Li; J. Li; K. J. L. Li; T. G. F. Li; X. Li; F. Linde; S. D. Linker; J. N. Linley; T. B. Littenberg; J. Liu; X. Liu; M. Llorens-Monteagudo; R. K. L. Lo; A. Lockwood; L. T. London; A. Longo; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; J. D. Lough; C. O. Lousto; G. Lovelace; M. Lower; H. Lück; D. Lumaca; A. P. Lundgren; Y. Ma; R. Macas; M. MacInnis; D. M. Macleod; I. A. O. MacMillan; A. Macquet; I. Magaña Hernandez; F. Magaña-Sandoval; C. Magazzù; R. M. Magee; E. Majorana; I. Maksimovic; S. Maliakal; A. Malik; N. Man; V. Mandic; V. Mangano; G. L. Mansell; M. Manske; M. Mantovani; M. Mapelli; F. Marchesoni; F. Marion; S. Márka; Z. Márka; C. Markakis; A. S. Markosyan; A. Markowitz; E. Maros; A. Marquina; S. Marsat; F. Martelli; I. W. Martin; R. M. Martin; M. Martinez; V. Martinez; D. V. Martynov; H. Masalehdan; K. Mason; E. Massera; A. Masserot; T. J. Massinger; M. Masso-Reid; S. Mastrogiovanni; A. Matas; M. Mateu-Lucena; F. Matichard; M. Matiushechkina; N. Mavalvala; E. Maynard; J. J. McCann; R. McCarthy; D. E. McClelland; S. McCormick; L. McCuller; S. C. McGuire; C. McIsaac; J. McIver; D. J. McManus; T. McRae; S. T. McWilliams; D. Meacher; G. D. Meadors; M. Mehmet; A. K. Mehta; A. Melatos; D. A. Melchor; G. Mendell; A. Menendez-Vazquez; R. A. Mercer; L. Mereni; K. Merfeld; E. L. Merilh; J. D. Merritt; M. Merzougui; S. Meshkov; C. Messenger; C. Messick; R. Metzdorff; P. M. Meyers; F. Meylahn; A. Mhaske; A. Miani; H. Miao; I. Michaloliakos; C. Michel; H. Middleton; L. Milano; A. L. Miller; M. Millhouse; J. C. Mills; E. Milotti; M. C. Milovich-Goff; O. Minazzoli; Y. Minenkov; Ll. M. Mir; A. Mishkin; C. Mishra; T. Mistry; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; G. Mo; K. Mogushi; S. R. P. Mohapatra; S. R. Mohite; I. Molina; M. Molina-Ruiz; M. Mondin; M. Montani; C. J. Moore; D. Moraru; F. Morawski; G. Moreno; S. Morisaki; B. Mours; C. M. Mow-Lowry; S. Mozzon; F. Muciaccia; Arunava Mukherjee; D. Mukherjee; Soma Mukherjee; Subroto Mukherjee; N. Mukund; A. Mullavey; J. Munch; E. A. Muñiz; P. G. Murray; S. L. Nadji; A. Nagar; I. Nardecchia; L. Naticchioni; R. K. Nayak; B. F. Neil; J. Neilson; G. Nelemans; T. J. N. Nelson; M. Nery; A. Neunzert; K. Y. Ng; S. Ng; C. Nguyen; P. Nguyen; T. Nguyen; S. A. Nichols; S. Nissanke; F. Nocera; M. Noh; C. North; D. Nothard; L. K. Nuttall; J. Oberling; B. D. O’Brien; J. O’Dell; G. Oganesyan; G. H. Ogin; J. J. Oh; S. H. Oh; F. Ohme; H. Ohta; M. A. Okada; C. Olivetto; P. Oppermann; R. J. Oram; B. O’Reilly; R. G. Ormiston; L. F. Ortega; R. O’Shaughnessy; S. Ossokine; C. Osthelder; D. J. Ottaway; H. Overmier; B. J. Owen; A. E. Pace; G. Pagano; M. A. Page; G. Pagliaroli; A. Pai; S. A. Pai; J. R. Palamos; O. Palashov; C. Palomba; H. Pan; P. K. Panda; T. H. Pang; C. Pankow; F. Pannarale; B. C. Pant; F. Paoletti; A. Paoli; A. Paolone; W. Parker; D. Pascucci; A. Pasqualetti; R. Passaquieti; D. Passuello; M. Patel; B. Patricelli; E. Payne; T. C. Pechsiri; M. Pedraza; M. Pegoraro; A. Pele; S. Penn; A. Perego; C. J. Perez; C. Périgois; A. Perreca; S. Perriès; J. Petermann; D. Petterson; H. P. Pfeiffer; K. A. Pham; K. S. Phukon; O. J. Piccinni; M. Pichot; M. Piendibene; F. Piergiovanni; L. Pierini; V. Pierro; G. Pillant; F. Pilo; L. Pinard; I. M. Pinto; K. Piotrzkowski; M. Pirello; M. Pitkin; E. Placidi; W. Plastino; C. Pluchar; R. Poggiani; E. Polini; D. Y. T. Pong; S. Ponrathnam; P. Popolizio; E. K. Porter; A. Poverman; J. Powell; M. Pracchia; A. K. Prajapati; K. Prasai; R. Prasanna; G. Pratten; T. Prestegard; M. Principe; G. A. Prodi; L. Prokhorov; P. Prosposito; A. Puecher; M. Punturo; F. Puosi; P. Puppo; M. Pürrer; H. Qi; V. Quetschke; P. J. Quinonez; R. Quitzow-James; F. J. Raab; G. Raaijmakers; H. Radkins; N. Radulesco; P. Raffai; H. Rafferty; S. X. Rail; S. Raja; C. Rajan; B. Rajbhandari; M. Rakhmanov; K. E. Ramirez; T. D. Ramirez; A. Ramos-Buades; J. Rana; K. Rao; P. Rapagnani; U. D. Rapol; B. Ratto; V. Raymond; M. Razzano; J. Read; D. J. Reardon; T. Regimbau; L. Rei; S. Reid; D. H. Reitze; P. Rettegno; F. Ricci; C. J. Richardson; J. W. Richardson; L. Richardson; P. M. Ricker; G. Riemenschneider; K. Riles; M. Rizzo; N. A. Robertson; F. Robinet; A. Rocchi; J. A. Rocha; S. Rodriguez; R. D. Rodriguez-Soto; L. Rolland; J. G. Rollins; V. J. Roma; M. Romanelli; R. Romano; C. L. Romel; A. Romero; I. M. Romero-Shaw; J. H. Romie; S. Ronchini; C. A. Rose; D. Rose; K. Rose; D. Rosińska; S. G. Rosofsky; M. P. Ross; S. Rowan; S. J. Rowlinson; Santosh Roy; Soumen Roy; P. Ruggi; K. Ryan; S. Sachdev; T. Sadecki; J. Sadiq; M. Sakellariadou; O. S. Salafia; L. Salconi; M. Saleem; A. Samajdar; E. J. Sanchez; J. H. Sanchez; L. E. Sanchez; N. Sanchis-Gual; J. R. Sanders; K. A. Santiago; E. Santos; T. R. Saravanan; N. Sarin; B. Sassolas; O. Sauter; R. L. Savage; V. Savant; D. Sawant; S. Sayah; D. Schaetzl; P. Schale; M. Scheel; J. Scheuer; A. Schindler-Tyka; P. Schmidt; R. Schnabel; R. M. S. Schofield; A. Schönbeck; E. Schreiber; B. W. Schulte; B. F. Schutz; O. Schwarm; E. Schwartz; J. Scott; S. M. Scott; M. Seglar-Arroyo; E. Seidel; D. Sellers; A. S. Sengupta; N. Sennett; D. Sentenac; V. Sequino; A. Sergeev; Y. Setyawati; T. Shaffer; M. S. Shahriar; S. Sharifi; A. Sharma; P. Sharma; P. Shawhan; H. Shen; M. Shikauchi; R. Shink; D. H. Shoemaker; D. M. Shoemaker; K. Shukla; S. ShyamSundar; M. Sieniawska; D. Sigg; L. P. Singer; D. Singh; N. Singh; A. Singha; A. Singhal; A. M. Sintes; V. Sipala; V. Skliris; B. J. J. Slagmolen; T. J. Slaven-Blair; J. Smetana; J. R. Smith; R. J. E. Smith; S. N. Somala; E. J. Son; S. Soni; B. Sorazu; V. Sordini; F. Sorrentino; N. Sorrentino; R. Soulard; T. Souradeep; E. Sowell; A. P. Spencer; M. Spera; A. K. Srivastava; V. Srivastava; K. Staats; C. Stachie; D. A. Steer; M. Steinke; J. Steinlechner; S. Steinlechner; D. Steinmeyer; G. Stolle-McAllister; D. J. Stops; M. Stover; K. A. Strain; G. Stratta; A. Strunk; R. Sturani; A. L. Stuver; J. Südbeck; S. Sudhagar; V. Sudhir; T. Z. Summerscales; H. Sun; L. Sun; S. Sunil; A. Sur; J. Suresh; P. J. Sutton; B. L. Swinkels; M. J. Szczepańczyk; M. Tacca; S. C. Tait; C. Talbot; A. J. Tanasijczuk; D. B. Tanner; D. Tao; A. Tapia; E. N. Tapia San Martin; J. D. Tasson; R. Taylor; R. Tenorio; L. Terkowski; M. P. Thirugnanasambandam; M. Thomas; P. Thomas; J. E. Thompson; S. R. Thondapu; K. A. Thorne; E. Thrane; Shubhanshu Tiwari; Srishti Tiwari; V. Tiwari; K. Toland; A. E. Tolley; M. Tonelli; Z. Tornasi; A. Torres-Forné; C. I. Torrie; I. Tosta e Melo; D. Töyrä; A. T. Tran; A. Trapananti; F. Travasso; G. Traylor; M. C. Tringali; A. Tripathee; A. Trovato; R. J. Trudeau; D. S. Tsai; K. W. Tsang; M. Tse; R. Tso; L. Tsukada; D. Tsuna; T. Tsutsui; M. Turconi; A. S. Ubhi; R. P. Udall; K. Ueno; D. Ugolini; C. S. Unnikrishnan; A. L. Urban; S. A. Usman; A. C. Utina; H. Vahlbruch; G. Vajente; A. Vajpeyi; G. Valdes; M. Valentini; V. Valsan; N. van Bakel; M. van Beuzekom; J. F. J. van den Brand; C. Van Den Broeck; D. C. Vander-Hyde; L. van der Schaaf; J. V. van Heijningen; M. Vardaro; A. F. Vargas; V. Varma; S. Vass; M. Vasúth; A. Vecchio; G. Vedovato; J. Veitch; P. J. Veitch; K. Venkateswara; J. Venneberg; G. Venugopalan; D. Verkindt; Y. Verma; D. Veske; F. Vetrano; A. Viceré; A. D. Viets; V. Villa-Ortega; J.-Y. Vinet; S. Vitale; T. Vo; H. Vocca; C. Vorvick; S. P. Vyatchanin; A. R. Wade; L. E. Wade; M. Wade; R. C. Walet; M. Walker; G. S. Wallace; L. Wallace; S. Walsh; J. Z. Wang; S. Wang; W. H. Wang; Y. F. Wang; R. L. Ward; J. Warner; M. Was; N. Y. Washington; J. Watchi; B. Weaver; L. Wei; M. Weinert; A. J. Weinstein; R. Weiss; F. Wellmann; L. Wen; P. Weßels; J. W. Westhouse; K. Wette; J. T. Whelan; D. D. White; L. V. White; B. F. Whiting; C. Whittle; D. M. Wilken; D. Williams; M. J. Williams; A. R. Williamson; J. L. Willis; B. Willke; D. J. Wilson; M. H. Wimmer; W. Winkler; C. C. Wipf; G. Woan; J. Woehler; J. K. Wofford; I. C. F. Wong; J. Wrangel; J. L. Wright; D. S. Wu; D. M. Wysocki; L. Xiao; H. Yamamoto; L. Yang; Y. Yang; Z. Yang; M. J. Yap; D. W. Yeeles; A. Yoon; Hang Yu; Haocun Yu; S. H. R. Yuen; A. Zadrożny; M. Zanolin; T. Zelenova; J.-P. Zendri; M. Zevin; J. Zhang; L. Zhang; R. Zhang; T. Zhang; C. Zhao; G. Zhao; M. Zhou; Z. Zhou; X. J. Zhu; M. E. Zucker; J. Zweizig; M. J. Keith; A. G. Lyne; J. Palfreyman; B. Shaw; B. W. Stappers; P. Weltevrede

<jats:title>Abstract</jats:title> <jats:p>We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437−4715, PSR J0711−6830, and PSR J0737−3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835−4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437−4715) or surpass (for PSR J0711−6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10<jats:sup>−8</jats:sup>. For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711−6830, the Crab pulsar, and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L21

Neutrino Counterparts of Fast Radio Bursts

Brian D. MetzgerORCID; Ke Fang; Ben Margalit

<jats:title>Abstract</jats:title> <jats:p>The discovery of a luminous radio burst, FRB 200428, with properties similar to those of fast radio bursts (FRBs), in coincidence with an X-ray flare from the Galactic magnetar SGR 1935+2154, supports magnetar models for cosmological FRBs. The burst’s X-ray to radio fluence ratio, as well as the X-ray spectral shape and peak energy, are consistent with FRB 200428 being the result of an ultra-relativistic shock (powered, e.g., by an ejected plasmoid) propagating into a magnetized baryon-rich external medium; the shock simultaneously generates X-ray/gamma-rays via thermal synchrotron emission from electrons heated behind the shock, and coherent radio emission via the synchrotron maser mechanism. Here, we point out that a unique consequence of this baryon-loaded shock scenario is the generation of a coincident burst of high-energy neutrinos, generated by photohadronic interaction of relativistic ions—heated or accelerated at the shock—with thermal synchrotron photons. We estimate the properties of these neutrino burst FRB counterparts and find that a fraction ∼10<jats:sup>−8</jats:sup>–10<jats:sup>−5</jats:sup> of the flare energy (or ∼10<jats:sup>−4</jats:sup>–10<jats:sup>−1</jats:sup> of the radio isotropic energy) is channeled into production of neutrinos with typical energies ∼TeV–PeV. We conclude by discussing prospects for detecting this signal with IceCube and future high-energy neutrino detectors.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L22

Exclusion of Cosmic Rays from Molecular Clouds by Self-generated Electric Fields

Kedron SilsbeeORCID; Alexei V. IvlevORCID

<jats:title>Abstract</jats:title> <jats:p>It was recently discovered that in some regions of the Galaxy, the cosmic-ray (CR) abundance is several orders of magnitude higher than previously thought. Additionally, there is evidence that in molecular cloud envelopes, the CR ionization may be dominated by electrons. We show that for regions with high, electron-dominated ionization, the penetration of CR electrons into molecular clouds is modulated by the electric field that develops as a result of the charge they deposit. We evaluate the significance of this novel mechanism of self-modulation and show that the CR penetration can be reduced by a factor of a few to a few hundred in high-ionization environments, such as those found near the Galactic center.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L25

Single-hemisphere Dynamos in M-dwarf Stars

Benjamin P. BrownORCID; Jeffrey S. OishiORCID; Geoffrey M. VasilORCID; Daniel LecoanetORCID; Keaton J. BurnsORCID

<jats:title>Abstract</jats:title> <jats:p>M-dwarf stars below a certain mass are convective from their cores to their photospheres. These fully convective objects are extremely numerous, very magnetically active, and the likely hosts of many exoplanets. Here we study, for the first time, dynamo action in simulations of stratified, rotating, fully convective M-dwarf stars. Importantly, we use new techniques to capture the correct full ball geometry down to the center of the star. We find surprising dynamo states in these systems, with the global-scale mean fields confined strongly to a single hemisphere, in contrast to prior stellar dynamo solutions. These hemispheric-dynamo stars are likely to have profoundly different interactions with their surroundings, with important implications for exoplanet habitability and stellar spindown.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L3

A Disk-driven Resonance as the Origin of High Inclinations of Close-in Planets

Cristobal PetrovichORCID; Diego J. MuñozORCID; Kaitlin M. KratterORCID; Renu MalhotraORCID

<jats:title>Abstract</jats:title> <jats:p>The recent characterization of transiting close-in planets has revealed an intriguing population of sub-Neptunes with highly tilted and even polar orbits relative to their host star’s equator. Any viable theory for the origin of these close-in, polar planets must explain (1) the observed stellar obliquities, (2) the substantial eccentricities, and (3) the existence of Jovian companions with large mutual inclinations. In this work, we propose a theoretical model that satisfies these requirements without invoking tidal dissipation or large primordial inclinations. Instead, tilting is facilitated by the protoplanetary disk dispersal during the late stage of planet formation, initiating a process of resonance sweeping and parametric instability. This mechanism consists of two steps. First, a nodal secular resonance excites the inclination to large values; then, once the inclination reaches a critical value, a linear eccentric instability is triggered, which detunes the resonance and ends inclination growth. The critical inclination is pushed to high values by general relativistic precession, making polar orbits an inherently post-Newtonian outcome. Our model predicts that polar, close-in sub-Neptunes coexist with cold Jupiters in low stellar obliquity orbits.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L5

An Earth-like Stellar Wind Environment for Proxima Centauri c

Julián D. Alvarado-GómezORCID; Jeremy J. DrakeORCID; Cecilia GarraffoORCID; Ofer CohenORCID; Katja PoppenhaegerORCID; Rakesh K. YadavORCID; Sofia P. MoschouORCID

<jats:title>Abstract</jats:title> <jats:p>A new planet has been recently discovered around Proxima Centauri. With an orbital separation of ∼1.44 au and a minimum mass of about <jats:inline-formula> <jats:tex-math> <?CDATA $7\,{M}_{\oplus }$?> </jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlabb885ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, Proxima c is a prime direct imaging target for atmospheric characterization. The latter can only be performed with a good understanding of the space environment of the planet, as multiple processes can have profound effects on the atmospheric structure and evolution. Here, we take one step in this direction by generating physically realistic numerical simulations of Proxima’s stellar wind, coupled to a magnetosphere and ionosphere model around Proxima c. We evaluate their expected variation due to the magnetic cycle of the host star, as well as for plausible inclination angles for the exoplanet orbit. Our results indicate stellar wind dynamic pressures comparable to present-day Earth, with a slight increase (by a factor of 2) during high-activity periods of the star. A relatively weak interplanetary magnetic field at the distance of Proxima c leads to negligible stellar wind Joule heating of the upper atmosphere (about 10% of the solar wind contribution on Earth) for an Earth-like planetary magnetic field (0.3 G). Finally, we provide an assessment of the likely extreme conditions experienced by the exoplanet candidate Proxima d, tentatively located at 0.029 au with a minimum mass of 0.29 <jats:italic>M</jats:italic> <jats:sub>⊕</jats:sub>.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L9

First Solar Energetic Particles Measured on the Lunar Far-side

Zigong XuORCID; Jingnan GuoORCID; Robert F. Wimmer-SchweingruberORCID; Johan L. Freiherr von ForstnerORCID; Yuming WangORCID; Nina DresingORCID; Henning Lohf; Shenyi Zhang; Bernd HeberORCID; Mei Yang

<jats:title>Abstract</jats:title> <jats:p>On 2019 May 6 the Lunar Lander Neutron &amp; Dosimetry (LND) Experiment on board the Chang’E-4 lander on the far-side of the Moon detected its first solar energetic particle (SEP) event with proton energies up to 21 MeV. Combined proton energy spectra are studied based on the LND, SOHO/EPHIN, and ACE/EPAM measurements, which show that LND could provide a complementary data set from a special location on the Moon, contributing to our existing observations and understanding of space environment. We applied velocity dispersion analysis to the impulsive electron event and weak proton enhancement and show that electrons are released only 22 minutes after the flare onset and ∼15 minutes after the type II radio burst, while protons are released more than one hour after the electron release. The beam-like in situ electrons and clear velocity dispersion indicate a good magnetic connection between the source and Earth. This is remarkable because stereoscopic remote-sensing observations from Earth and STEREO-A suggest that the SEPs are associated with an active region nearly 113° away from the magnetic footpoint of Earth. This suggests that these SEPs did not propagate along the nominal Parker spiral normally assumed for ballistic mapping and that the release and propagation mechanism of electrons and protons are likely to differ significantly for this event.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L30

A Tale of Two Transition Disks: ALMA Long-baseline Observations of ISO-Oph 2 Reveal Two Closely Packed Nonaxisymmetric Rings and a ∼2 au Cavity

Camilo González-RuilovaORCID; Lucas A. CiezaORCID; Antonio S. HalesORCID; Sebastián PérezORCID; Alice ZurloORCID; Carla Arce-TordORCID; Simón CasassusORCID; Hector CánovasORCID; Mario FlockORCID; Gregory J. HerczegORCID; Paola PinillaORCID; Daniel J. PriceORCID; David A. PrincipeORCID; Dary Ruíz-RodríguezORCID; Jonathan P. WilliamsORCID

<jats:title>Abstract</jats:title> <jats:p>ISO-Oph 2 is a wide-separation (240 au) binary system where the primary star harbors a massive (<jats:italic>M</jats:italic> <jats:sub>dust</jats:sub> ∼ 40 <jats:italic>M</jats:italic> <jats:sub>⊕</jats:sub>) ring-like disk with a dust cavity ∼50 au in radius and the secondary hosts a much lighter (<jats:italic>M</jats:italic> <jats:sub>dust</jats:sub> ∼ 0.8 <jats:italic>M</jats:italic> <jats:sub>⊕</jats:sub>) disk. As part of the high-resolution follow-up of the “Ophiuchus Disk Survey Employing ALMA” (ODISEA) project, we present 1.3 mm continuum and <jats:sup>12</jats:sup>CO molecular line observations of the system at 002 (3 au) resolution. We resolve the disk around the primary into two nonaxisymmetric rings and find that the disk around the secondary is only ∼7 au across and also has a dust cavity (<jats:italic>r</jats:italic> ∼ 2.2 au). Based on the infrared flux ratio of the system and the M0 spectral type of the primary, we estimate the mass of the companion to be close to the brown-dwarf limit. Hence, we conclude that the ISO-Oph 2 system contains the largest and smallest cavities, the smallest measured disk size, and the resolved cavity around the lowest-mass object (<jats:italic>M</jats:italic> <jats:sub>⋆</jats:sub> ∼ 0.08 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>) in Ophiuchus. From the <jats:sup>12</jats:sup>CO data, we find a bridge of gas connecting both disks. While the morphology of the rings around the primary might be due to an unseen disturber within the cavity, we speculate that the bridge might indicate an alternative scenario in which the secondary has recently flown by the primary star causing the azimuthal asymmetries in its disk. The ISO-Oph 2 system is therefore a remarkable laboratory to study disk evolution, planet formation, and companion–disk interactions.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L33