Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Supplement (ApJS)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde dic. 1996 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0067-0049
ISSN electrónico
1538-4365
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Erratum: “Optical Photometry of the Quasar 3C 454.3 during the Period 2006–2018 and the Long-term Periodicity Analysis” (2021, ApJS, 253, 10)
J. H. Fan; S. O. Kurtanidze; Y. Liu; O. M. Kurtanidze; M. G. Nikolashvili; X. Liu; L. X. Zhang; J. T. Cai; J. T. Zhu; S. L. He; W. X. Yang; J. H. Yang; M. F. Gu; G. Y. Luo; Y. H. Yuan
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 22
Erratum: “Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of Radial Chemical Substructures” (2021, ApJS, 257, 3)
Charles J. Law; Ryan A. Loomis; Richard Teague; Karin I. Öberg; Ian Czekala; Sean M. Andrews; Jane Huang; Yuri Aikawa; Felipe Alarcón; Jaehan Bae; Edwin A. Bergin; Jennifer B. Bergner; Yann Boehler; Alice S. Booth; Arthur D. Bosman; Jenny K. Calahan; Gianni Cataldi; L. Ilsedore Cleeves; Kenji Furuya; Viviana V. Guzmán; John D. Ilee; Romane Le Gal; Yao Liu; Feng Long; François Ménard; Hideko Nomura; Chunhua Qi; Kamber R. Schwarz; Anibal Sierra; Takashi Tsukagoshi; Yoshihide Yamato; Merel L. R. van ’t Hoff; Catherine Walsh; David J. Wilner; Ke Zhang
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 23
An Insight-HXMT Dedicated 33 day Observation of SGR J1935+2154. I. Burst Catalog
Ce Cai; Wang-Chen Xue; Cheng-Kui Li; Shao-Lin Xiong; Shuang-Nan Zhang; Lin Lin; Xiao-Bo Li; Ming-Yu Ge; Hai-Sheng Zhao; Li-Ming Song; Fang-Jun Lu; Shu Zhang; Yan-Qiu Zhang; Shuo Xiao; You-Li Tuo; Qi-Bin Yi; Zhi Wei Guo; Sheng Lun Xie; Yi Zhao; Zhen Zhang; Qing-Xin Li; Jia-Cong Liu; Chao Zheng; Ping Wang
<jats:title>Abstract</jats:title> <jats:p>Magnetars are neutron stars with an extreme magnetic field and sometimes manifest as soft gamma-ray repeaters (SGRs). SGR J1935+2154 is one of the most prolific bursters and the first confirmed source of a fast radio burst (FRB; i.e., FRB 200428). Encouraged by the discovery of the first X-ray counterpart of FRBs, the Insight-Hard X-ray Modulation Telescope (Insight-HXMT) implemented a dedicated 33-day-long Target of Opportunity observation of SGR J1935+2154 since 2020 April 28. With the HE, ME, and LE telescopes, Insight-HXMT provides a thorough monitoring of burst activity evolution of SGR J1935+2154, in a very broad energy range (1–250 keV) with high temporal resolution and high sensitivity, resulting in a unique valuable data set for detailed studies of SGR J1935+2154. In this work, we conduct a comprehensive analysis of this observation, including detailed burst search, identification, and temporal analyses. After carefully removing false triggers, we find a total of 75 bursts from SGR J1935+2154, out of which 70 are single pulsed. The maximum burst rate is about 56 bursts day<jats:sup>−1</jats:sup>. Both the burst duration and the waiting time between two successive bursts follow lognormal distributions, consistent with previous studies. We also find that bursts with longer duration (some are multipulsed) tend to occur during the period with relatively high burst rate. There is no correlation between the waiting time and the fluence or duration of either the former or latter burst. It also seems that there is no correlation between burst duration and hardness ratio, in contrast to some previous reports. In addition, we do not find any X-ray burst associated with any reported radio bursts except for FRB 200428.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 24
An Insight-HXMT Dedicated 33 day Observation of SGR J1935+2154. II. Burst Spectral Catalog
Ce Cai; Shao-Lin Xiong; Lin Lin; Cheng-Kui Li; Shuang-Nan Zhang; Wang-Chen Xue; You-Li Tuo; Xiao-Bo Li; Ming-Yu Ge; Hai-Sheng Zhao; Li-Ming Song; Fang-Jun Lu; Shu Zhang; Qing-Xin Li; Shuo Xiao; Zhi-Wei Guo; Sheng-Lun Xie; Yan-Qiu Zhang; Qi-Bin Yi; Yi Zhao; Zhen Zhang; Jia-Cong Liu; Chao Zheng; Ping Wang
<jats:title>Abstract</jats:title> <jats:p>Since 2020 April 28, Insight-HXMT has implemented a dedicated observation on the magnetar SGR J1935+2154. Thanks to the wide energy band (1–250 keV) and high sensitivity of Insight-HXMT, we obtained 75 bursts from SGR J1935+2154 during a month-long activity episode after the emission of FRB 200428. Here we report the detailed time-integrated spectral analysis of these bursts and the statistical distribution of the spectral parameters. We find that for ∼15% (11/75) of SGR J1935+2154 bursts, the CPL model is preferred, and most of them occurred in the later part of this active epoch. In the cumulative fluence distribution, we find that the fluence of bursts in our sample is about an order of magnitude weaker than that of Fermi/GBM, but it follows the same power-law distribution. Finally, we find a burst with similar peak energy to the time-integrated spectrum of the X-ray burst associated with FRB 200428 (FRB 200428-Associated Burst), but the low energy index is harder.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 25
Generalized Fluid Models of the Braginskii Type
P. Hunana; T. Passot; E. Khomenko; D. Martínez-Gómez; M. Collados; A. Tenerani; G. P. Zank; Y. Maneva; M. L. Goldstein; G. M. Webb
<jats:title>Abstract</jats:title> <jats:p>Several generalizations of the well-known fluid model of Braginskii (1965) are considered. We use the Landau collisional operator and the moment method of Grad. We focus on the 21-moment model that is analogous to the Braginskii model, and we also consider a 22-moment model. Both models are formulated for general multispecies plasmas with arbitrary masses and temperatures, where all of the fluid moments are described by their evolution equations. The 21-moment model contains two “heat flux vectors” (third- and fifth-order moments) and two “viscosity tensors” (second- and fourth-order moments). The Braginskii model is then obtained as a particular case of a one ion–electron plasma with similar temperatures, with decoupled heat fluxes and viscosity tensors expressed in a quasistatic approximation. We provide all of the numerical values of the Braginskii model in a fully analytic form (together with the fourth- and fifth-order moments). For multispecies plasmas, the model makes the calculation of the transport coefficients straightforward. Formulation in fluid moments (instead of Hermite moments) is also suitable for implementation into existing numerical codes. It is emphasized that it is the quasistatic approximation that makes some Braginskii coefficients divergent in a weakly collisional regime. Importantly, we show that the heat fluxes and viscosity tensors are coupled even in the linear approximation, and that the fully contracted (scalar) perturbations of the fourth-order moment, which are accounted for in the 22-moment model, modify the energy exchange rates. We also provide several appendices, which can be useful as a guide for deriving the Braginskii model with the moment method of Grad.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 26
The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925*
Ian U. Roederer; James E. Lawler; Elizabeth A. Den Hartog; Vinicius M. Placco; Rebecca Surman; Timothy C. Beers; Rana Ezzeddine; Anna Frebel; Terese T. Hansen; Kohei Hattori; Erika M. Holmbeck; Charli M. Sakari
<jats:title>Abstract</jats:title> <jats:p>We present a nearly complete rapid neutron-capture process (<jats:italic>r</jats:italic>-process) chemical inventory of the metal-poor ([Fe/H] = −1.46 ± 0.10) <jats:italic>r</jats:italic>-process-enhanced ([Eu/Fe] = +1.32 ± 0.08) halo star HD 222925. This abundance set is the most complete for any object beyond the solar system, with a total of 63 metals detected and seven with upper limits. It comprises 42 elements from 31 ≤ <jats:italic>Z</jats:italic> ≤ 90, including elements rarely detected in <jats:italic>r</jats:italic>-process-enhanced stars, such as Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, W, Re, Os, Ir, Pt, and Au. We derive these abundances from an analysis of 404 absorption lines in ultraviolet spectra collected using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and previously analyzed optical spectra. A series of appendices discusses the atomic data and quality of fits for these lines. The <jats:italic>r</jats:italic>-process elements from Ba to Pb, including all elements at the third <jats:italic>r</jats:italic>-process peak, exhibit remarkable agreement with the solar <jats:italic>r</jats:italic>-process residuals, with a standard deviation of the differences of only 0.08 dex (17%). In contrast, deviations among the lighter elements from Ga to Te span nearly 1.4 dex, and they show distinct trends from Ga to Se, Nb through Cd, and In through Te. The <jats:italic>r</jats:italic>-process contribution to Ga, Ge, and As is small, and Se is the lightest element whose production is dominated by the <jats:italic>r</jats:italic>-process. The lanthanide fraction, log <jats:italic>X</jats:italic> <jats:sub>La</jats:sub> = −1.39 ± 0.09, is typical for <jats:italic>r</jats:italic>-process-enhanced stars and higher than that of the kilonova from the GW170817 neutron-star merger event. We advocate adopting this pattern as an alternative to the solar <jats:italic>r</jats:italic>-process-element residuals when confronting future theoretical models of heavy-element nucleosynthesis with observations.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 27
New Fe i Level Energies and Line Identifications from Stellar Spectra. III. Initial Results from UV, Optical, and Infrared Spectra
Ruth C. Peterson; Robert L. Kurucz
<jats:title>Abstract</jats:title> <jats:p>The spectrum of neutral iron is critical to astrophysics, yet furnace laboratory experiments cannot reach high-lying Fe <jats:sc>i</jats:sc> levels. Instead, Peterson & Kurucz and Peterson et al. adopted ultraviolet (UV) and optical spectra of warm stars to identify and assign energies for 124 Fe <jats:sc>i</jats:sc> levels with 1900 detectable Fe <jats:sc>i</jats:sc> lines, and to derive astrophysical gf values for over 1000 of these. An energy value was assumed for each unknown Fe <jats:sc>i</jats:sc> level, and confirmed if the wavelengths predicted in updated Kurucz Fe <jats:sc>i</jats:sc> calculations matched the wavelengths of four or more unidentified lines in the observed spectra. Nearly all these identifications were for LS levels, those characterized by spin–orbit coupling, whose lines fall primarily at UV and optical wavelengths. This work contributes nearly 100 new Fe <jats:sc>i</jats:sc> level identifications. Thirty-nine LS levels are identified largely by incorporating published positions of unidentified laboratory Fe <jats:sc>i</jats:sc> lines with wavelengths <2000 Å. Adding infrared (IR) spectra provided 60 Fe <jats:sc>i</jats:sc> jK levels, where a single outer electron orbits a compact core. Their weak IR lines are searchable, because their mutual energies obey tight relationships. For each new Fe <jats:sc>i</jats:sc> level, this work again makes publicly available its identification, its energy, and a list of its potentially detectable lines with theoretical gf values, totalling >16,000 lines. For over 2000 of these, this work provides astrophysical gf values adjusted semiempirically to fit the stellar spectra. The potential impact of this work on modeling UV and IR stellar spectra is noted.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 28
A Compound Poisson Generator Approach to Point-source Inference in Astrophysics
Gabriel H. Collin; Nicholas L. Rodd; Tyler Erjavec; Kerstin Perez
<jats:title>Abstract</jats:title> <jats:p>The identification and description of point sources is one of the oldest problems in astronomy, yet even today the correct statistical treatment for point sources remains one of the field’s hardest problems. For dim or crowded sources, likelihood-based inference methods are required to estimate the uncertainty on the characteristics of the source population. In this work, a new parametric likelihood is constructed for this problem using compound Poisson generator (CPG) functionals that incorporate instrumental effects from first principles. We demonstrate that the CPG approach exhibits a number of advantages over non-Poissonian template fitting (NPTF)—an existing method—in a series of test scenarios in the context of X-ray astronomy. These demonstrations show that the effect of the point-spread function, effective area, and choice of point-source spatial distribution cannot, generally, be factorized as they are in NPTF, while the new CPG construction is validated in these scenarios. Separately, an examination of the diffuse-flux emission limit is used to show that most simple choices of priors on the standard parameterization of the population model can result in unexpected biases: when a model comprising both a point-source population and diffuse component is applied to this limit, nearly all observed flux will be assigned to either the population or to the diffuse component. A new parameterization is presented for these priors that properly estimates the uncertainties in this limit. In this choice of priors, CPG correctly identifies that the fraction of flux assigned to the population model cannot be constrained by the data.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 29
NuSTAR Observations of 52 Compton-thick Active Galactic Nuclei Selected by the Swift/Burst Alert Telescope All-sky Hard X-Ray Survey
Atsushi Tanimoto; Yoshihiro Ueda; Hirokazu Odaka; Satoshi Yamada; Claudio Ricci
<jats:title>Abstract</jats:title> <jats:p>We present systematic broadband X-ray spectral analysis of 52 Compton-thick (<jats:inline-formula> <jats:tex-math> <?CDATA $24\leqslant \mathrm{log}{N}_{{\rm{H}}}^{\mathrm{LOS}}/{\mathrm{cm}}^{-2}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mn>24</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>log</mml:mi> <mml:msubsup> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>LOS</mml:mi> </mml:mrow> </mml:msubsup> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msup> <mml:mrow> <mml:mi>cm</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>) active galactic nucleus (CTAGN) candidates selected by the Swift/Burst Alert Telescope all-sky hard X-ray survey observed with Chandra, X-ray Multi-Mirror Mission-Newton (XMM-Newton), Swift/X-Ray Telescope, Suzaku, and NuSTAR. The XMM-Newton data of 10 objects and the NuSTAR data of 15 objects are published for the first time. We use an X-ray spectral model from a clumpy torus (XClumpy) to determine the torus properties. As a result, the hydrogen column density along the line of sight <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{\rm{H}}}^{\mathrm{LOS}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>LOS</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> obtained from the XClumpy model indicates that 24 objects are Compton-thin AGNs and 28 objects are CTAGNs in a 90% confidence interval. The main reason is the difference in the torus model applied. The hydrogen column density along the equatorial direction <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{\rm{H}}}^{\mathrm{Equ}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Equ</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> of CTAGNs inferred from the XClumpy model is larger than that of less obscured AGNs. The Compton-thin torus covering factor <jats:italic>C</jats:italic> <jats:sub>22</jats:sub> obtained from the XClumpy model is consistent with that of Ricci et al. in the low Eddington ratio (<jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}{R}_{\mathrm{Edd}}\leqslant -1.0$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Edd</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≤</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1.0</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>), whereas <jats:italic>C</jats:italic> <jats:sub>22</jats:sub> inferred from the XClumpy model is larger than that of Ricci et al. in the high Eddington ratio (<jats:inline-formula> <jats:tex-math> <?CDATA $-1.0\leqslant \mathrm{log}{R}_{\mathrm{Edd}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo>−</mml:mo> <mml:mn>1.0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Edd</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>). The average value of the Compton-thick torus covering factor <jats:italic>C</jats:italic> <jats:sub>24</jats:sub> obtained from the XClumpy model is <jats:inline-formula> <jats:tex-math> <?CDATA ${36}_{-4}^{+4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>36</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn6.gif" xlink:type="simple" /> </jats:inline-formula>%. This value is larger than that of Ricci et al. (<jats:inline-formula> <jats:tex-math> <?CDATA ${C}_{24}\simeq {27}_{-4}^{+4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>24</mml:mn> </mml:mrow> </mml:msub> <mml:mo>≃</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>27</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac5f59ieqn7.gif" xlink:type="simple" /> </jats:inline-formula>%) based on the assumption that all AGNs have intrinsically the same torus structure. These results suggest that the structure of CTAGNs may be intrinsically different from that of less obscured AGNs.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 30
Dependence of Narrow-line Region Sizes on [O iii] Luminosity in Low-redshift Active Galactic Nuclei with Double-peaked Broad Balmer Emission Lines
Zhang XueGuang
<jats:title>Abstract</jats:title> <jats:p>In this paper, simple but interesting results are reported on the upper limits of narrow-line region (NLR) sizes of a small sample of 38 low-redshift (<jats:italic>z</jats:italic> < 0.1) active galactic nuclei (AGN) with double-peaked broad emission lines (double-peaked BLAGN), in order to check whether the NLR sizes in type-1 AGN (broad line) and type-2 AGN (narrow line) obey a similar empirical dependence on [O <jats:sc>iii</jats:sc>] luminosity. In order to correct the inclination effects on projected NLR sizes of type-1 AGN, the accretion disk origin is commonly applied to describe the double-peaked broad H<jats:italic>α</jats:italic> line, leading to the determined inclination angles of central disk-like broad-line regions of 38 double-peaked BLAGN. Then, considering the fixed Sloan Digital Sky Survey (SDSS) fiber radius, the upper limits of the NLR sizes of the 38 double-peaked BLAGN can be estimated. Meanwhile, a strong linear correlation between continuum luminosity and [O <jats:sc>iii</jats:sc>] luminosity is applied to confirm that the [O <jats:sc>iii</jats:sc>] emissions of the 38 double-peaked BLAGN are totally covered in the SDSS fibers. Considering the reddening-corrected measured [O <jats:sc>iii</jats:sc>] luminosity, the upper limits of the NLR sizes of the 38 double-peaked BLAGN are within a 99.9999% confidence interval of the expected results from the empirical relation between NLR size and [O <jats:sc>iii</jats:sc>] luminosity in type-2 AGN. In the current understanding, there are no challenges to the unified model of AGN through the space properties of NLRs.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 31