Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Supplement (ApJS)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde dic. 1996 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0067-0049
ISSN electrónico
1538-4365
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Neutrino Transport with the Monte Carlo Method. II. Quantum Kinetic Equations
Chinami Kato; Hiroki Nagakura; Taiki Morinaga
<jats:title>Abstract</jats:title> <jats:p>Neutrinos have a unique quantum feature as flavor conversions. Recent studies suggested that collective neutrino oscillations play important roles in high-energy astrophysical phenomena. The quantum kinetic equation (QKE) is capable of describing the neutrino flavor conversion, transport, and matter collision self-consistently. However, we have experienced many technical difficulties in their numerical implementation. In this paper, we present a new QKE solver based on a Monte Carlo (MC) approach. This is an upgraded version of our classical MC neutrino transport solver; in essence, a flavor degree of freedom including mixing state is added into each MC particle. This extension requires updating numerical treatments of collision terms, in particular for scattering processes. We deal with the technical problem by generating a new MC particle at each scattering event. To reduce statistical noise inherent in MC methods, we develop the effective mean free path method. This suppresses a sudden change of flavor state due to collisions without increasing the number of MC particles. We present a suite of code tests to validate these new modules with comparison to the results reported in previous studies. Our QKE-MC solver is developed with fundamentally different philosophy and design from other deterministic and mesh methods, suggesting that it will be complementary to others and potentially provide new insights into physical processes of neutrino dynamics.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 55
Benchmarking Multiconfiguration Dirac–Hartree–Fock Calculations for Astrophysics: Si-like Ions from Cr xi to Zn xvii
X. H. Zhang; G. Del Zanna; K. Wang; P. Rynkun; P. Jönsson; M. Godefroid; G. Gaigalas; L. Radžiūtė; L. H. Ma; R. Si; J. Xiao; Z. B. Chen; J. Yan; Y. Wu; C. Y. Chen
<jats:title>Abstract</jats:title> <jats:p>The multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction methods are used to provide excitation energies, lifetimes, and radiative transition data for the 604 (699, 702, 704, 704, 704, and 699) lowest levels of the 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic> <jats:sup>3</jats:sup>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>3<jats:italic>d</jats:italic>, 3<jats:italic>p</jats:italic> <jats:sup>4</jats:sup>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>d</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>d</jats:italic> <jats:sup>2</jats:sup>, 3<jats:italic>p</jats:italic> <jats:sup>3</jats:sup>3<jats:italic>d</jats:italic>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic>3<jats:italic>d</jats:italic> <jats:sup>2</jats:sup>, 3<jats:italic>s</jats:italic>3<jats:italic>d</jats:italic> <jats:sup>3</jats:sup>, 3<jats:italic>p</jats:italic>3<jats:italic>d</jats:italic> <jats:sup>3</jats:sup>, 3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>d</jats:italic> <jats:sup>2</jats:sup>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>4<jats:italic>s</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>4<jats:italic>p</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>4<jats:italic>d</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>4<jats:italic>f</jats:italic>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>4<jats:italic>s</jats:italic>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>4<jats:italic>p</jats:italic>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>4<jats:italic>d</jats:italic>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic> <jats:sup>2</jats:sup>4<jats:italic>f</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>d</jats:italic>4<jats:italic>s</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>d</jats:italic>4<jats:italic>p</jats:italic>, 3<jats:italic>p</jats:italic> <jats:sup>3</jats:sup>4<jats:italic>s</jats:italic>, 3<jats:italic>p</jats:italic> <jats:sup>3</jats:sup>4<jats:italic>p</jats:italic>, 3<jats:italic>s</jats:italic>3<jats:italic>p</jats:italic>3<jats:italic>d</jats:italic>4<jats:italic>s</jats:italic>, 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>5<jats:italic>s</jats:italic>, and 3<jats:italic>s</jats:italic> <jats:sup>2</jats:sup>3<jats:italic>p</jats:italic>5<jats:italic>p</jats:italic> configurations in Cr <jats:sc>xi</jats:sc>, (Mn <jats:sc>xii</jats:sc>, Fe <jats:sc>xiii</jats:sc>, Co <jats:sc>xiv</jats:sc>, Ni <jats:sc>xv</jats:sc>, Cu <jats:sc>xvi</jats:sc>, and Zn <jats:sc>xvii</jats:sc>). Previous line identifications of Fe <jats:sc>xiii</jats:sc> and Ni <jats:sc>xv</jats:sc> in the EUV and X-ray wavelength ranges are reviewed by comprehensively comparing the MCDHF theoretical results with available experimental data. Many recent identifications of Fe <jats:sc>xiii</jats:sc> and Ni <jats:sc>xv</jats:sc> lines are confirmed, and several new identifications for these two ions are proposed. A consistent atomic data set with spectroscopic accuracy is provided for the lowest hundreds of levels for Si-like ions of iron-group elements of astrophysical interest, for which experimental values are scarce. The uncertainty estimation method suggested by Kramida, applied to the comparison of the length and velocity line strength values, is used for ranking the transition data. The correlation of the latter with the gauge dependency patterns of the line strengths is investigated.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 56
Cold Molecular Gas in Merger Remnants. II. The Properties of Dense Molecular Gas
Junko Ueda; Daisuke Iono; Min S. Yun; Tomonari Michiyama; Yoshimasa Watanabe; Ronald L. Snell; Daniel Rosa-González; Toshiki Saito; Olga Vega; Takuji Yamashita
<jats:title>Abstract</jats:title> <jats:p>We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Sixteen molecular lines from 14 different molecular species and isotopologues were identified, and 21 out of 28 sources were detected in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1–0) and HCO<jats:sup>+</jats:sup>(1–0), to <jats:sup>13</jats:sup>CO (1–0) are 3–4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of <jats:sup>13</jats:sup>CO and high dense gas fractions suggested by high HCN (1–0)/<jats:sup>12</jats:sup>CO (1–0) ratios. We calculate the IR-to-HCN (1–0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source ((1.1–6.5) × 10<jats:sup>3</jats:sup> <jats:italic>L</jats:italic> <jats:sub>☉</jats:sub>/(K km s<jats:sup>−1</jats:sup> pc<jats:sup>2</jats:sup>)). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2–3 than those of the early/mid-stage mergers and nonmerging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-<jats:sup>12</jats:sup>CO (1–0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the postmerger phase.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 57
Physical and Chemical Properties of Wolf–Rayet Planetary Nebulae
A. Danehkar
<jats:title>Abstract</jats:title> <jats:p>Wolf–Rayet ([WR]) and weak-emission-line (<jats:italic>wels</jats:italic>) central stars of planetary nebulae (PNs) have hydrogen-deficient atmospheres, whose origins are not well understood. In the present study, we have conducted plasma diagnostics and abundance analyses of 18 Galactic PNs surrounding [WR] and <jats:italic>wels</jats:italic> nuclei, using collisionally excited lines (CELs) and optical recombination lines (ORLs) measured with the Wide Field Spectrograph on the Australian National University 2.3 m telescope at the Siding Spring Observatory complemented with optical archival data. Our plasma diagnostics imply that the electron densities and temperatures derived from CELs are correlated with the intrinsic nebular H<jats:italic>β</jats:italic> surface brightness and excitation class, respectively. Self-consistent plasma diagnostics of heavy-element ORLs of N<jats:sup>2+</jats:sup> and O<jats:sup>2+</jats:sup> suggest that a small fraction of cool (≲7000 K), dense (∼10<jats:sup>4</jats:sup>–10<jats:sup>5</jats:sup> cm<jats:sup>−3</jats:sup>) materials may be present in some objects, though with large uncertainties. Our abundance analyses indicate that the abundance discrepancy factors (ADFs ≡ ORLs/CELs) of O<jats:sup>2+</jats:sup> are correlated with the dichotomies between forbidden-line and He <jats:sc>i</jats:sc> temperatures. Our results likely point to the presence of a tiny fraction of cool, oxygen-rich dense clumps within diffuse warm ionized nebulae. Moreover, our elemental abundances derived from CELs are mostly consistent with asymptotic giant branch models in the range of initial masses from 1.5 to 5 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. Further studies are necessary to understand better the origins of abundance discrepancies in PNs around [WR] and <jats:italic>wels</jats:italic> stars.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 58
The First CHIME/FRB Fast Radio Burst Catalog
Mandana Amiri; Bridget C. Andersen; Kevin Bandura; Sabrina Berger; Mohit Bhardwaj; Michelle M. Boyce; P. J. Boyle; Charanjot Brar; Daniela Breitman; Tomas Cassanelli; Pragya Chawla; Tianyue Chen; J.-F. Cliche; Amanda Cook; Davor Cubranic; Alice P. Curtin; Meiling Deng; Matt Dobbs; Fengqiu (Adam) Dong; Gwendolyn Eadie; Mateus Fandino; Emmanuel Fonseca; B. M. Gaensler; Utkarsh Giri; Deborah C. Good; Mark Halpern; Alex S. Hill; Gary Hinshaw; Alexander Josephy; Jane F. Kaczmarek; Zarif Kader; Joseph W. Kania; Victoria M. Kaspi; T. L. Landecker; Dustin Lang; Calvin Leung; Dongzi Li; Hsiu-Hsien Lin; Kiyoshi W. Masui; Ryan Mckinven; Juan Mena-Parra; Marcus Merryfield; Bradley W. Meyers; Daniele Michilli; Nikola Milutinovic; Arash Mirhosseini; Moritz Münchmeyer; Arun Naidu; Laura Newburgh; Cherry Ng; Chitrang Patel; Ue-Li Pen; Emily Petroff; Tristan Pinsonneault-Marotte; Ziggy Pleunis; Masoud Rafiei-Ravandi; Mubdi Rahman; Scott M. Ransom; Andre Renard; Pranav Sanghavi; Paul Scholz; J. Richard Shaw; Kaitlyn Shin; Seth R. Siegel; Andrew E. Sikora; Saurabh Singh; Kendrick M. Smith; Ingrid Stairs; Chia Min Tan; S. P. Tendulkar; Keith Vanderlinde; Haochen Wang; Dallas Wulf; A. V. Zwaniga
<jats:title>Abstract</jats:title> <jats:p>We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of <jats:inline-formula> <jats:tex-math> <?CDATA $\alpha =-1.40\pm 0.11({\rm{stat.}}{)}_{-0.09}^{+0.06}({\rm{sys.}})$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1.40</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.11</mml:mn> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">stat.</mml:mi> <mml:msubsup> <mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.06</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">sys.</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac33abieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find that <jats:italic>α</jats:italic> is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of <jats:inline-formula> <jats:tex-math> <?CDATA $[820\pm 60({\rm{stat.}}{)}_{-200}^{+220}({\rm{sys.}})]/{\rm{sky}}/{\rm{day}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">[</mml:mo> <mml:mn>820</mml:mn> <mml:mo>±</mml:mo> <mml:mn>60</mml:mn> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">stat.</mml:mi> <mml:msubsup> <mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>200</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>220</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">sys.</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">]</mml:mo> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">sky</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">day</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac33abieqn2.gif" xlink:type="simple" /> </jats:inline-formula> above a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm<jats:sup>−3</jats:sup>.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 59
Systematically Measuring Ultra-diffuse Galaxies (SMUDGes). II. Expanded Survey Description and the Stripe 82 Catalog
Dennis Zaritsky; Richard Donnerstein; Ananthan Karunakaran; C. E. Barbosa; Arjun Dey; Jennifer Kadowaki; Kristine Spekkens; Huanian Zhang
<jats:title>Abstract</jats:title> <jats:p>We present 226 large ultra-diffuse galaxy (UDG) candidates (<jats:italic>r</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> > 5.″3, <jats:italic>μ</jats:italic> <jats:sub>0,<jats:italic>g</jats:italic> </jats:sub> > 24 mag arcsec<jats:sup>−2</jats:sup>) in the SDSS Stripe 82 region recovered using our improved procedure developed in anticipation of processing the entire Legacy Surveys footprint. The advancements include less constrained structural parameter fitting, expanded wavelet filtering criteria, consideration of Galactic dust, estimates of parameter uncertainties and completeness based on simulated sources, and refinements of our automated candidate classification. We have a sensitivity ∼1 mag fainter in <jats:italic>μ</jats:italic> <jats:sub>0,<jats:italic>g</jats:italic> </jats:sub> than the largest published catalog of this region. Using our completeness-corrected sample, we find that (1) there is no significant decline in the number of UDG candidates as a function of <jats:italic>μ</jats:italic> <jats:sub>0,<jats:italic>g</jats:italic> </jats:sub> to the limit of our survey (∼26.5 mag arcsec<jats:sup>−2</jats:sup>); (2) bluer candidates have smaller Sérsic <jats:italic>n</jats:italic>; (3) most blue (<jats:italic>g</jats:italic>–<jats:italic>r</jats:italic> < 0.45 mag) candidates have <jats:italic>μ</jats:italic> <jats:sub>0,<jats:italic>g</jats:italic> </jats:sub> ≲ 25 mag arcsec<jats:sup>−2</jats:sup> and will fade to populate the UDG red sequence we observe to ∼26.5 mag arcsec<jats:sup>−2</jats:sup>; (4) any red UDGs that exist significantly below our <jats:italic>μ</jats:italic> <jats:sub>0,<jats:italic>g</jats:italic> </jats:sub> sensitivity limit are not descendent from blue UDGs in our sample; and (5) candidates with lower <jats:italic>μ</jats:italic> <jats:sub>0,<jats:italic>g</jats:italic> </jats:sub> tend to smaller <jats:italic>n</jats:italic>. We anticipate that the final SMUDGes sample will contain ∼30 × as many candidates.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 60
Comprehensive Broadband X-Ray and Multiwavelength Study of Active Galactic Nuclei in 57 Local Luminous and Ultraluminous Infrared Galaxies Observed with NuSTAR and/or Swift/BAT
Satoshi Yamada; Yoshihiro Ueda; Atsushi Tanimoto; Masatoshi Imanishi; Yoshiki Toba; Claudio Ricci; George C. Privon
<jats:title>Abstract</jats:title> <jats:p>We perform a systematic X-ray spectroscopic analysis of 57 local luminous and ultraluminous infrared galaxy systems (containing 84 individual galaxies) observed with the Nuclear Spectroscopic Telescope Array and/or Swift/BAT. Combining soft X-ray data obtained with Chandra, XMM-Newton, Suzaku, and/or Swift/XRT, we identify 40 hard (>10 keV) X-ray–detected active galactic nuclei (AGNs) and constrain their torus parameters with the X-ray clumpy torus model XCLUMPY. Among the AGNs at <jats:italic>z</jats:italic> < 0.03, for which sample biases are minimized, the fraction of Compton-thick (<jats:italic>N</jats:italic> <jats:sub>H</jats:sub> ≥ 10<jats:sup>24</jats:sup> cm<jats:sup>−2</jats:sup>) AGNs reaches <jats:inline-formula> <jats:tex-math> <?CDATA ${64}_{-15}^{+14}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>64</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>15</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>14</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac17f5ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>% (6/9 sources) in late mergers, while it is <jats:inline-formula> <jats:tex-math> <?CDATA ${24}_{-10}^{+12}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>24</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac17f5ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>% (3/14 sources) in early mergers, consistent with the tendency reported by Ricci et al. We find that the bolometric AGN luminosities derived from the infrared data increase but the X-ray to bolometric luminosity ratios decrease with merger stage. The X-ray-weak AGNs in late mergers ubiquitously show massive outflows at subparsec to kiloparsec scales. Among them, the most luminous AGNs (<jats:italic>L</jats:italic> <jats:sub>bol,AGN</jats:sub> ∼ 10<jats:sup>46</jats:sup> erg s<jats:sup>−1</jats:sup>) have relatively small column densities of ≲10<jats:sup>23</jats:sup> cm<jats:sup>−2</jats:sup> and almost super-Eddington ratios (<jats:italic>λ</jats:italic> <jats:sub>Edd</jats:sub> ∼ 1.0). Their torus covering factors (<jats:italic>C</jats:italic> <jats:sub>T</jats:sub> <jats:sup>(22)</jats:sup> ∼ 0.6) are larger than those of Swift/BAT-selected AGNs with similarly high Eddington ratios. These results suggest a scenario where, in the final stage of mergers, multiphase strong outflows are produced due to chaotic quasi-spherical inflows, and the AGN becomes extremely X-ray weak and deeply buried due to obscuration by inflowing and/or outflowing material.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 61
KAPPA: A Package for the Synthesis of Optically Thin Spectra for the Non-Maxwellian κ-distributions. II. Major Update to Compatibility with CHIANTI Version 10
Elena Dzifčáková; Jaroslav Dudík; Alena Zemanová; Juraj Lörinčík; Marian Karlický
<jats:title>Abstract</jats:title> <jats:p>KAPPA is a database and software for the calculation of the optically thin spectra for the non-Maxwellian <jats:italic>κ</jats:italic>-distributions that were recently diagnosed in the plasma of solar coronal loops, flares, as well as in the transition region. KAPPA is based on the widely used CHIANTI database and reproduces many of its capabilities for <jats:italic>κ</jats:italic>-distributions. Here we perform a major update of the KAPPA database, including a near-complete recalculation of the ionization, recombination, excitation, and deexcitation rates for all ions in the database, as well as an implementation of the two-ion model for calculations of relative-level populations (and intensities) if these are modified by ionization and recombination from or to excited levels. As an example of KAPPA usage, we explore novel diagnostics of <jats:italic>κ</jats:italic>, and show that O <jats:sc>iii</jats:sc> lines near 500 and 700 Å provide a strong sensitivity to <jats:italic>κ</jats:italic>, with some line intensity ratios changing by a factor of up to 2–4 compared to Maxwellian. This is much larger than previously employed diagnostics of <jats:italic>κ</jats:italic>.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 62
Interstellar Extinction and Elemental Abundances: Individual Sight Lines
Wenbo Zuo; Aigen Li; Gang Zhao
<jats:title>Abstract</jats:title> <jats:p>While it is well recognized that both the Galactic interstellar extinction curves and the gas-phase abundances of dust-forming elements exhibit considerable variations from one sight line to another, as yet most of the dust extinction modeling efforts have been directed to the Galactic average extinction curve, which is obtained by averaging over many clouds of different gas and dust properties. Therefore, any details concerning the relationship between the dust properties and the interstellar environments are lost. Here we utilize the wealth of extinction and elemental abundance data obtained by space telescopes and explore the dust properties of a large number of individual sight lines. We model the observed extinction curve of each sight line and derive the abundances of the major dust-forming elements (i.e., C, O, Si, Mg, and Fe) required to be tied up in dust (i.e., dust depletion). We then confront the derived dust depletions with the observed gas-phase abundances of these elements and investigate the environmental effects on the dust properties and elemental depletions. It is found that for the majority of the sight lines the interstellar oxygen atoms are fully accommodated by gas and dust and therefore there does not appear to be a “missing oxygen” problem. For those sight lines with an extinction-to-hydrogen column density <jats:italic>A</jats:italic> <jats:sub> <jats:italic>V</jats:italic> </jats:sub>/<jats:italic>N</jats:italic> <jats:sub>H</jats:sub> ≳ 4.8 × 10<jats:sup>−22</jats:sup> mag cm<jats:sup>2</jats:sup> H<jats:sup>−1</jats:sup> there are shortages of C, Si, Mg, and Fe elements for making dust to account for the observed extinction, even if the interstellar C/H, Si/H, Mg/H, and Fe/H abundances are assumed to be protosolar abundances augmented by Galactic chemical evolution.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 63
Hard X-Ray Irradiation Potentially Drives Negative AGN Feedback by Altering Molecular Gas Properties
Taiki Kawamuro; Claudio Ricci; Takuma Izumi; Masatoshi Imanishi; Shunsuke Baba; Dieu D. Nguyen; Kyoko Onishi
<jats:title>Abstract</jats:title> <jats:p>To investigate the role of active galactic nucleus (AGN) X-ray irradiation on the interstellar medium (ISM), we systematically analyzed Chandra and Atacama Large Millimeter/submillimeter Array CO (<jats:italic>J</jats:italic> = 2–1) data for 26 hard X-ray (>10 keV) selected AGNs at redshifts below 0.05. While Chandra unveils the distribution of X-ray-irradiated gas via Fe-K<jats:italic>α</jats:italic> emission, the CO (<jats:italic>J</jats:italic> = 2–1) observations reveal that of cold molecular gas. At high resolutions ≲1″, we derive Fe-K<jats:italic>α</jats:italic> and CO (<jats:italic>J</jats:italic> = 2–1) maps for the nuclear 2″ region and for the external annular region of 2″–4″, where 2″ is ∼100–600 pc for most of our AGNs. First, focusing on the external regions, we find the Fe-K<jats:italic>α</jats:italic> emission for six AGNs above 2<jats:italic>σ</jats:italic>. Their large equivalent widths (≳1 keV) suggest a fluorescent process as their origin. Moreover, by comparing the 6–7 keV/3–6 keV ratio, as a proxy of Fe-K<jats:italic>α</jats:italic>, and CO (<jats:italic>J</jats:italic> = 2–1) images for three AGNs with the highest significant Fe-K<jats:italic>α</jats:italic> detections, we find a possible spatial separation. These suggest the presence of X-ray-irradiated ISM and the change in the ISM properties. Next, examining the nuclear regions, we find that (1) the 20–50 keV luminosity increases with the CO (<jats:italic>J</jats:italic> = 2–1) luminosity; (2) the ratio of CO (<jats:italic>J</jats:italic> = 2–1)/HCN (<jats:italic>J</jats:italic> = 1–0) luminosities increases with 20–50 keV luminosity, suggesting a decrease in the dense gas fraction with X-ray luminosity; and (3) the Fe-K<jats:italic>α</jats:italic>-to-X-ray continuum luminosity ratio decreases with the molecular gas mass. This may be explained by a negative AGN feedback scenario: the mass accretion rate increases with gas mass, and simultaneously, the AGN evaporates a portion of the gas, which possibly affects star formation.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 64