Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Supplement (ApJS)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde dic. 1996 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0067-0049
ISSN electrónico
1538-4365
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Census of High- and Medium-mass Protostars. V. CO Abundance and the Galactic X CO Factor
Rebecca L. Pitts; Peter J. Barnes
<jats:title>Abstract</jats:title> <jats:p>We present the second dust continuum data release in the Census of High- and Medium-mass Protostars (CHaMP), expanding the methodology trialed in Pitts et al. to the entire CHaMP survey area (280° < <jats:italic>ℓ</jats:italic> < 300°, − 4° < <jats:italic>b</jats:italic> < + 2°). This release includes maps of dust temperature (<jats:italic>T</jats:italic> <jats:sub>d</jats:sub>), H<jats:sub>2</jats:sub> column density (<jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{{\rm{H}}}_{2}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn1.gif" xlink:type="simple" /> </jats:inline-formula>), gas-phase CO abundance, and temperature–density plots for every prestellar clump with Herschel coverage, showing no evidence of internal heating for most clumps in our sample. We show that CO abundance is a strong function of <jats:italic>T</jats:italic> <jats:sub>d</jats:sub> and can be fit with a second-order polynomial in log-space, with a typical dispersion of a factor of 2–3. The CO abundance peaks at <jats:inline-formula> <jats:tex-math> <?CDATA ${20.0}_{-1.0}^{+0.4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>20.0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.4</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn2.gif" xlink:type="simple" /> </jats:inline-formula> K with a value of <jats:inline-formula> <jats:tex-math> <?CDATA ${7.4}_{-0.3}^{+0.2}\times {10}^{-5}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>7.4</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn3.gif" xlink:type="simple" /> </jats:inline-formula> per H<jats:sub>2</jats:sub>; the low <jats:italic>T</jats:italic> <jats:sub>d</jats:sub> at which this maximal abundance occurs relative to laboratory results is likely due to interstellar UV bombardment in the largest survey fields. Finally, we show that, as predicted by theoretical literature and hinted at in previous studies of individual clouds, the conversion factor from integrated <jats:sup>12</jats:sup>CO line intensity (<jats:inline-formula> <jats:tex-math> <?CDATA ${I}_{{}^{12}{\rm{CO}}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn4.gif" xlink:type="simple" /> </jats:inline-formula>) to <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{{\rm{H}}}_{2}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn5.gif" xlink:type="simple" /> </jats:inline-formula>, the <jats:italic>X</jats:italic> <jats:sub>CO</jats:sub> factor, varies as a broken power law in <jats:inline-formula> <jats:tex-math> <?CDATA ${I}_{{}^{12}{\rm{CO}}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn6.gif" xlink:type="simple" /> </jats:inline-formula> with a transition zone between 70 and 90 K km s<jats:sup>−1</jats:sup>. The <jats:italic>X</jats:italic> <jats:sub>CO</jats:sub> function we propose has <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{{\rm{H}}}_{2}}\propto {I}_{{}^{12}{\rm{CO}}}^{0.51}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0.51</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn7.gif" xlink:type="simple" /> </jats:inline-formula> for <jats:inline-formula> <jats:tex-math> <?CDATA ${I}_{{}^{12}{\rm{CO}}}\lesssim 70$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≲</mml:mo> <mml:mn>70</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn8.gif" xlink:type="simple" /> </jats:inline-formula> K km s<jats:sup>−1</jats:sup> and <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{{\rm{H}}}_{2}}\propto {I}_{{}^{12}{\rm{CO}}}^{2.3}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2.3</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn9.gif" xlink:type="simple" /> </jats:inline-formula> for <jats:inline-formula> <jats:tex-math> <?CDATA ${I}_{{}^{12}{\rm{CO}}}\gtrsim 90$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≳</mml:mo> <mml:mn>90</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn10.gif" xlink:type="simple" /> </jats:inline-formula> K km s<jats:sup>−1</jats:sup>. The high-<jats:inline-formula> <jats:tex-math> <?CDATA ${I}_{{}^{12}{\rm{CO}}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn11.gif" xlink:type="simple" /> </jats:inline-formula> side should be generalizable with known adjustments for metallicity, but the influence of interstellar UV fields on the low-<jats:inline-formula> <jats:tex-math> <?CDATA ${I}_{{}^{12}{\rm{CO}}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>12</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">CO</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsac063dieqn12.gif" xlink:type="simple" /> </jats:inline-formula> side may be sample specific. We discuss how these results expand on previous works in the CHaMP series and help tie together observational, theoretical, and laboratory studies on CO over the past decade.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 3
Searching for Low-redshift Faint Galaxies with MMT/Hectospec
Cheng Cheng; Jia-Sheng Huang; Christopher N. A. Willmer; Hong-Xin Zhang; Matthew L. N. Ashby; Hai Xu; Marcin Sawicki; Stephane Arnouts; Stephen Gwyn; Guilllaume Desprez; Jean Coupon; Anneya Golob; Piaoran Liang; Tianwen Cao; Yaru Shi; Gaoxiang Jin; Chuan He; Shumei Wu; Zijian Li; Y. Sophia Dai; C. Kevin Xu; Xu Shao; Marat Musin
<jats:title>Abstract</jats:title> <jats:p>We present redshifts for 2753 low-redshift galaxies between 0.03 ≲ <jats:italic>z</jats:italic> <jats:sub>spec</jats:sub> ≲ 0.5 with 18 ≤ <jats:italic>r</jats:italic> ≤ 22 obtained with Hectospec at the Multi-Mirror Telescope. The observations targeted the XMM-LSS, ELAIS-N1 and DEEP2-3 fields, each of which covers ∼1 deg<jats:sup>2</jats:sup>. These fields are also part of the recently completed Canada–France–Hawaii Telescope Large Area <jats:italic>U</jats:italic>-band Deep Survey and ongoing Hyper Suprime-Cam deep fields surveys. The efficiency of our technique for selecting low-redshift galaxies is confirmed by the redshift distribution of our sources. In addition to redshifts, these high signal-to-noise ratio spectra are used to measure ages, metallicities, and nuclear activity levels. In combination with the photometric catalog in <jats:italic>u</jats:italic>, <jats:italic>g</jats:italic>, <jats:italic>r</jats:italic>, <jats:italic>i</jats:italic>, <jats:italic>z</jats:italic>, <jats:italic>y</jats:italic> down to 27 AB mag, we are able to study the galaxy population down to stellar masses of ∼10<jats:sup>8</jats:sup> <jats:italic> M</jats:italic> <jats:sub>⊙</jats:sub>. This paper presents the observational strategy, the reduction procedure and properties of the galaxy sample. (The catalog can be accessed through the survey’s website at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://mips.as.arizona.edu/~cnaw/Faint_Low_z/" xlink:type="simple">http://mips.as.arizona.edu/~cnaw/Faint_Low_z/</jats:ext-link>.)</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 4
Astro-COLIBRI—The COincidence LIBrary for Real-time Inquiry for Multimessenger Astrophysics
P. Reichherzer; F. Schüssler; V. Lefranc; A. Yusafzai; A. K. Alkan; H. Ashkar; J. Becker Tjus
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 5
Knowledge Gaps in the Cometary Spectra of Oxygen-bearing Molecular Cations
Ryan C. Fortenberry; Dennis Bodewits; Donna M. Pierce
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 6
Search for Collisionally Pumped 1720 MHz OH Masers in Star-forming Regions: A VLA Survey of 18 cm OH Masers toward 80 Class I Methanol Masers
O. S. Bayandina; I. E. Val’tts; S. E. Kurtz; N. N. Shakhvorostova
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 7
The Simulation of Superluminous Supernovae Using the M1 Approach for Radiation Transfer
Egor Urvachev; Dmitry Shidlovski; Nozomu Tominaga; Semyon Glazyrin; Sergei Blinnikov
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 8
Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3
S. A. Stanford; D. Masters; B. Darvish; D. Stern; J. G. Cohen; P. Capak; N. Hernitschek; I. Davidzon; J. Rhodes; D. B. Sanders; B. Mobasher; F. J. Castander; S. Paltani; N. Aghanim; A. Amara; N. Auricchio; A. Balestra; R. Bender; C. Bodendorf; D. Bonino; E. Branchini; J. Brinchmann; V. Capobianco; C. Carbone; J. Carretero; R. Casas; M. Castellano; S. Cavuoti; A. Cimatti; R. Cledassou; C. J. Conselice; L. Corcione; A. Costille; M. Cropper; H. Degaudenzi; M. Douspis; F. Dubath; S. Dusini; P. Fosalba; M. Frailis; E. Franceschi; P. Franzetti; M. Fumana; B. Garilli; C. Giocoli; F. Grupp; S. V. H. Haugan; H. Hoekstra; W. Holmes; F. Hormuth; P. Hudelot; K. Jahnke; A. Kiessling; M. Kilbinger; T. Kitching; B. Kubik; M. Kümmel; M. Kunz; H. Kurki-Suonio; R. Laureijs; S. Ligori; P. B. Lilje; I. Lloro; E. Maiorano; O. Marggraf; K. Markovic; R. Massey; M. Meneghetti; G. Meylan; L. Moscardini; S. M. Niemi; C. Padilla; F. Pasian; K. Pedersen; V. Pettorino; S. Pires; M. Poncet; L. Popa; L. Pozzetti; F. Raison; M. Roncarelli; E. Rossetti; R. Saglia; R. Scaramella; P. Schneider; A. Secroun; G. Seidel; S. Serrano; C. Sirignano; G. Sirri; A. N. Taylor; H. I. Teplitz; I. Tereno; R. Toledo-Moreo; E. A. Valentijn; L. Valenziano; G. A. Verdoes Kleijn; Y. Wang; G. Zamorani; J. Zoubian; M. Brescia; G. Congedo; L. Conversi; Y. Copin; S. Kermiche; R. Kohley; E. Medinaceli; S. Mei; M. Moresco; B. Morin; E. Munari; G. Polenta; F. Sureau; P. Tallada Crespí; T. Vassallo; A. Zacchei; S. Andreon; H. Aussel; C. Baccigalupi; A. Balaguera-Antolínez; M. Baldi; S. Bardelli; A. Biviano; E. Borsato; E. Bozzo; C. Burigana; R. Cabanac; S. Camera; A. Cappi; C. S. Carvalho; S. Casas; G. Castignani; C. Colodro-Conde; J. Coupon; H. M. Courtois; J.-G. Cuby; A. Da Silva; S. de la Torre; D. Di Ferdinando; C. A. J. Duncan; X. Dupac; M. Fabricius; M. Farina; S. Farrens; P. G. Ferreira; F. Finelli; P. Flose-Reimberg; S. Fotopoulou; S. Galeotta; K. Ganga; W. Gillard; G. Gozaliasl; J. Graciá-Carpio; E. Keihanen; C. C. Kirkpatrick; V. Lindholm; G. Mainetti; D. Maino; N. Martinet; F. Marulli; M. Maturi; S. Maurogordato; R. B. Metcalf; R. Nakajima; C. Neissner; J. W. Nightingale; A. A. Nucita; L. Patrizii; D. Potter; A. Renzi; G. Riccio; E. Romelli; A. G. Sánchez; D. Sapone; M. Schirmer; M. Schultheis; V. Scottez; L. Stanco; M. Tenti; R. Teyssier; F. Torradeflot; J. Valiviita; M. Viel; L. Whittaker; E. Zucca
<jats:title>Abstract</jats:title> <jats:p>The Complete Calibration of the Color–Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of <jats:italic>i</jats:italic> ∼ 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage <jats:sc>iv</jats:sc> dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B–2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < <jats:italic>z</jats:italic> <jats:sub> <jats:italic>p</jats:italic> </jats:sub> < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 9
A Sanity Check for Planets around Evolved Stars
M. P. Döllinger; M. Hartmann
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 10
Background Short-period Eclipsing Binaries in the Original Kepler Field
John Bienias; Attila Bódi; Adrienn Forró; Tamás Hajdu; Róbert Szabó
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 11
Fermi Large Area Telescope Performance after 10 Years of Operation
M. Ajello; W. B. Atwood; M. Axelsson; R. Bagagli; M. Bagni; L. Baldini; D. Bastieri; F. Bellardi; R. Bellazzini; E. Bissaldi; E. D. Bloom; R. Bonino; J. Bregeon; A. Brez; P. Bruel; R. Buehler; S. Buson; R. A. Cameron; P. A. Caraveo; E. Cavazzuti; M. Ceccanti; S. Chen; C. C. Cheung; S. Ciprini; I. Cognard; J. Cohen-Tanugi; S. Cutini; F. D’Ammando; P. de la Torre Luque; F. de Palma; S. W. Digel; F. Dirirsa; N. Di Lalla; L. Di Venere; A. Domínguez; D. Fabiani; E. C. Ferrara; A. Fiori; G. Foglia; Y. Fukazawa; P. Fusco; F. Gargano; D. Gasparrini; M. Giroletti; T. Glanzman; D. Green; S. Griffin; M.-H. Grondin; J. E. Grove; L. Guillemot; S. Guiriec; M. Gustafsson; E. Hays; D. Horan; G. Jóhannesson; T. J. Johnson; T. Kamae; M. Kerr; M. Kuss; S. Larsson; L. Latronico; M. Lemoine-Goumard; J. Li; I. Liodakis; F. Longo; F. Loparco; M. N. Lovellette; P. Lubrano; S. Maldera; A. Manfreda; G. Martí-Devesa; M. N. Mazziotta; N. Menon; I. Mereu; M. Meyer; P. F. Michelson; M. Minuti; W. Mitthumsiri; T. Mizuno; M. Mongelli; M. E. Monzani; I. V. Moskalenko; M. Negro; E. Nuss; R. Ojha; M. Orienti; E. Orlando; A. Paccagnella; V. S. Paliya; D. Paneque; Z. Pei; J. S. Perkins; M. Pesce-Rollins; M. Pinchera; F. Piron; H. Poon; T. A. Porter; R. Primavera; G. Principe; J. L. Racusin; S. Rainò; R. Rando; B. Rani; E. Rapposelli; M. Razzano; S. Razzaque; A. Reimer; O. Reimer; J. J. Russell; N. Saggini; P. M. Saz Parkinson; N. Scolieri; D. Serini; C. Sgrò; E. J. Siskind; D. A. Smith; G. Spandre; P. Spinelli; D. J. Suson; H. Tajima; J. G. Thayer; D. J. Thompson; L. Tibaldo; D. F. Torres; G. Tosti; J. Valverde; L. Vigiani; G. Zaharijas
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 12