Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
COMAP Early Science. I. Overview
Kieran A. Cleary; Jowita Borowska; Patrick C. Breysse; Morgan Catha; Dongwoo T. Chung; Sarah E. Church; Clive Dickinson; Hans Kristian Eriksen; Marie Kristine Foss; Joshua Ott Gundersen; Stuart E. Harper; Andrew I. Harris; Richard Hobbs; Håvard T. Ihle; Junhan Kim; Jonathon Kocz; James W. Lamb; Jonas G. S. Lunde; Hamsa Padmanabhan; Timothy J. Pearson; Liju Philip; Travis W. Powell; Maren Rasmussen; Anthony C. S. Readhead; Thomas J. Rennie; Marta B. Silva; Nils-Ole Stutzer; Bade D. Uzgil; Duncan J. Watts; Ingunn Kathrine Wehus; David P. Woody; Lilian Basoalto; J. Richard Bond; Delaney A. Dunne; Todd Gaier; Brandon Hensley; Laura C. Keating; Charles R. Lawrence; Norman Murray; Roberta Paladini; Rodrigo Reeves; Marco P. Viero; Risa H. Wechsler
<jats:title>Abstract</jats:title> <jats:p>The CO Mapping Array Project (COMAP) aims to use line-intensity mapping of carbon monoxide (CO) to trace the distribution and global properties of galaxies over cosmic time, back to the Epoch of Reionization (EoR). To validate the technologies and techniques needed for this goal, a Pathfinder instrument has been constructed and fielded. Sensitive to CO(1–0) emission from <jats:italic>z</jats:italic> = 2.4–3.4 and a fainter contribution from CO(2–1) at <jats:italic>z</jats:italic> = 6–8, the Pathfinder is surveying 12 deg<jats:sup>2</jats:sup> in a 5 yr observing campaign to detect the CO signal from <jats:italic>z</jats:italic> ∼ 3. Using data from the first 13 months of observing, we estimate <jats:italic>P</jats:italic> <jats:sub>CO</jats:sub>(<jats:italic>k</jats:italic>) = −2.7 ± 1.7 × 10<jats:sup>4</jats:sup> <jats:italic> μ</jats:italic>K<jats:sup>2</jats:sup> Mpc<jats:sup>3</jats:sup> on scales <jats:italic>k</jats:italic> = 0.051 −0.62 Mpc<jats:sup>−1</jats:sup>, the first direct three-dimensional constraint on the clustering component of the CO(1–0) power spectrum. Based on these observations alone, we obtain a constraint on the amplitude of the clustering component (the squared mean CO line temperature bias product) of <jats:inline-formula> <jats:tex-math> <?CDATA ${\left\langle {Tb}\right\rangle }^{2}\lt 49$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mfenced close="〉" open="〈"> <mml:mrow> <mml:mi mathvariant="italic">Tb</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo><</mml:mo> <mml:mn>49</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac63ccieqn1.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>μ</jats:italic>K<jats:sup>2</jats:sup>, nearly an order-of-magnitude improvement on the previous best measurement. These constraints allow us to rule out two models from the literature. We forecast a detection of the power spectrum after 5 yr with signal-to-noise ratio (S/N) 9–17. Cross-correlation with an overlapping galaxy survey will yield a detection of the CO–galaxy power spectrum with S/N of 19. We are also conducting a 30 GHz survey of the Galactic plane and present a preliminary map. Looking to the future of COMAP, we examine the prospects for future phases of the experiment to detect and characterize the CO signal from the EoR.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 182
COMAP Early Science. II. Pathfinder Instrument
James W. Lamb; Kieran A. Cleary; David P. Woody; Morgan Catha; Dongwoo T. Chung; Joshua Ott Gundersen; Stuart E. Harper; Andrew I. Harris; Richard Hobbs; Håvard T. Ihle; Jonathon Kocz; Timothy J. Pearson; Liju Philip; Travis W. Powell; Lilian Basoalto; J. Richard Bond; Jowita Borowska; Patrick C. Breysse; Sarah E. Church; Clive Dickinson; Delaney A. Dunne; Hans Kristian Eriksen; Marie Kristine Foss; Todd Gaier; Junhan Kim; Charles R. Lawrence; Jonas G. S. Lunde; Hamsa Padmanabhan; Maren Rasmussen; Anthony C. S. Readhead; Rodrigo Reeves; Thomas J. Rennie; Nils-Ole Stutzer; Marco P. Viero; Duncan J. Watts; Ingunn Kathrine Wehus
<jats:title>Abstract</jats:title> <jats:p>Line intensity mapping (LIM) is a new technique for tracing the global properties of galaxies over cosmic time. Detection of the very faint signals from redshifted carbon monoxide (CO), a tracer of star formation, pushes the limits of what is feasible with a total-power instrument. The CO Mapping Project Pathfinder is a first-generation instrument aiming to prove the concept and develop the technology for future experiments, as well as delivering early science products. With 19 receiver channels in a hexagonal focal plane arrangement on a 10.4 m antenna and an instantaneous 26–34 GHz frequency range with 2 MHz resolution, it is ideally suited to measuring CO (<jats:italic>J</jats:italic> = 1–0) from <jats:italic>z</jats:italic> ∼ 3. In this paper we discuss strategies for designing and building the Pathfinder and the challenges that were encountered. The design of the instrument prioritized LIM requirements over those of ancillary science. After a couple of years of operation, the instrument is well understood, and the first year of data is already yielding useful science results. Experience with this Pathfinder will guide the design of the next generations of experiments.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 183
COMAP Early Science. III. CO Data Processing
Marie K. Foss; Håvard T. Ihle; Jowita Borowska; Kieran A. Cleary; Hans Kristian Eriksen; Stuart E. Harper; Junhan Kim; James W. Lamb; Jonas G. S. Lunde; Liju Philip; Maren Rasmussen; Nils-Ole Stutzer; Bade D. Uzgil; Duncan J. Watts; Ingunn K. Wehus; David P. Woody; J. Richard Bond; Patrick C. Breysse; Morgan Catha; Sarah E. Church; Dongwoo T. Chung; Clive Dickinson; Delaney A. Dunne; Todd Gaier; Joshua Ott Gundersen; Andrew I. Harris; Richard Hobbs; Charles R. Lawrence; Norman Murray; Anthony C. S. Readhead; Hamsa Padmanabhan; Timothy J. Pearson; Thomas J. Rennie
<jats:title>Abstract</jats:title> <jats:p>We describe the first-season CO Mapping Array Project (COMAP) analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and mapmaking. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High-efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including <jats:italic>χ</jats:italic> <jats:sup>2</jats:sup> and multiscale correlation tests. Applying this pipeline to the first-season COMAP data, we produce a data set with very low levels of correlated noise. We find that one of our two scanning strategies (the Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our data processing and observing efficiencies and take account of planned improvements to estimate our future performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in companion papers.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 184
COMAP Early Science. IV. Power Spectrum Methodology and Results
Håvard T. Ihle; Jowita Borowska; Kieran A. Cleary; Hans Kristian Eriksen; Marie K. Foss; Stuart E. Harper; Junhan Kim; Jonas G. S. Lunde; Liju Philip; Maren Rasmussen; Nils-Ole Stutzer; Bade D. Uzgil; Duncan J. Watts; Ingunn Kathrine Wehus; J. Richard Bond; Patrick C. Breysse; Morgan Catha; Sarah E. Church; Dongwoo T. Chung; Clive Dickinson; Delaney A. Dunne; Todd Gaier; Joshua Ott Gundersen; Andrew I. Harris; Richard Hobbs; James W. Lamb; Charles R. Lawrence; Norman Murray; Anthony C. S. Readhead; Hamsa Padmanabhan; Timothy J. Pearson; Thomas J. Rennie; David P. Woody
<jats:title>Abstract</jats:title> <jats:p>We present the power spectrum methodology used for the first-season COMAP analysis, and assess the quality of the current data set. The main results are derived through the Feed–Feed Pseudo-Cross-Spectrum (FPXS) method, which is a robust estimator with respect to both noise modeling errors and experimental systematics. We use effective transfer functions to take into account the effects of instrumental beam smoothing and various filter operations applied during the low-level data processing. The power spectra estimated in this way have allowed us to identify a systematic error associated with one of our two scanning strategies, believed to be due to residual ground or atmospheric contamination. We omit these data from our analysis and no longer use this scanning technique for observations. We present the power spectra from our first season of observing, and demonstrate that the uncertainties are integrating as expected for uncorrelated noise, with any residual systematics suppressed to a level below the noise. Using the FPXS method, and combining data on scales <jats:italic>k</jats:italic> = 0.051–0.62 Mpc<jats:sup>−1</jats:sup>, we estimate <jats:italic>P</jats:italic> <jats:sub>CO</jats:sub>(k) = −2. 7 ± 1.7 × 10<jats:sup>4</jats:sup> <jats:italic> μ</jats:italic>K<jats:sup>2</jats:sup> Mpc<jats:sup>3</jats:sup>, the first direct 3D constraint on the clustering component of the CO(1–0) power spectrum in the literature.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 185
COMAP Early Science. V. Constraints and Forecasts at z ∼ 3
Dongwoo T. Chung; Patrick C. Breysse; Kieran A. Cleary; Håvard T. Ihle; Hamsa Padmanabhan; Marta B. Silva; J. Richard Bond; Jowita Borowska; Morgan Catha; Sarah E. Church; Delaney A. Dunne; Hans Kristian Eriksen; Marie Kristine Foss; Todd Gaier; Joshua Ott Gundersen; Stuart E. Harper; Andrew I. Harris; Brandon Hensley; Richard Hobbs; Laura C. Keating; Junhan Kim; James W. Lamb; Charles R. Lawrence; Jonas Gahr Sturtzel Lunde; Norman Murray; Timothy J. Pearson; Liju Philip; Maren Rasmussen; Anthony C. S. Readhead; Thomas J. Rennie; Nils-Ole Stutzer; Bade D. Uzgil; Marco P. Viero; Duncan J. Watts; Risa H. Wechsler; Ingunn Kathrine Wehus; David P. Woody
<jats:title>Abstract</jats:title> <jats:p>We present the current state of models for the <jats:italic>z</jats:italic> ∼ 3 carbon monoxide (CO) line intensity signal targeted by the CO Mapping Array Project (COMAP) Pathfinder in the context of its early science results. Our fiducial model, relating dark matter halo properties to CO luminosities, informs parameter priors with empirical models of the galaxy–halo connection and previous CO (1–0) observations. The Pathfinder early science data spanning wavenumbers <jats:italic>k</jats:italic> = 0.051–0.62 Mpc<jats:sup>−1</jats:sup> represent the first direct 3D constraint on the clustering component of the CO (1–0) power spectrum. Our 95% upper limit on the redshift-space clustering amplitude <jats:italic>A</jats:italic> <jats:sub>clust</jats:sub> ≲ 70 <jats:italic>μ</jats:italic>K<jats:sup>2</jats:sup> greatly improves on the indirect upper limit of 420 <jats:italic>μ</jats:italic>K<jats:sup>2</jats:sup> reported from the CO Power Spectrum Survey (COPSS) measurement at <jats:italic>k</jats:italic> ∼ 1 Mpc<jats:sup>−1</jats:sup>. The COMAP limit excludes a subset of models from previous literature and constrains interpretation of the COPSS results, demonstrating the complementary nature of COMAP and interferometric CO surveys. Using line bias expectations from our priors, we also constrain the squared mean line intensity–bias product, <jats:inline-formula> <jats:tex-math> <?CDATA ${\left\langle {Tb}\right\rangle }_{2}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mfenced close="〉" open="〈"> <mml:mrow> <mml:mi mathvariant="italic">Tb</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac63c7ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> ≲ 50 <jats:italic>μ</jats:italic>K<jats:sup>2</jats:sup>, and the cosmic molecular gas density, <jats:italic>ρ</jats:italic> <jats:sub>H2</jats:sub> < 2.5 × 10<jats:sup>8</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> Mpc<jats:sup>−3</jats:sup> (95% upper limits). Based on early instrument performance and our current CO signal estimates, we forecast that the 5 yr Pathfinder campaign will detect the CO power spectrum with overall signal-to-noise ratio of 9–17. Between then and now, we also expect to detect the CO–galaxy cross-spectrum using overlapping galaxy survey data, enabling enhanced inferences of cosmic star formation and galaxy evolution history.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 186
COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey
Thomas J. Rennie; Stuart E. Harper; Clive Dickinson; Liju Philip; Kieran A. Cleary; Richard J. Bond; Jowita Borowska; Patrick C. Breysse; Morgan Catha; Roke Cepeda-Arroita; Dongwoo T. Chung; Sarah E. Church; Delaney A. Dunne; Hans Kristian Eriksen; Marie Kristine Foss; Todd Gaier; Joshua Ott Gundersen; Andrew I. Harris; Brandon Hensley; Richard Hobbs; Håvard T. Ihle; James W. Lamb; Charles R. Lawrence; Jonas G. S. Lunde; Roberta Paladini; Timothy J. Pearson; Maren Rasmussen; Anthony C. S. Readhead; Nils-Ole Stutzer; Duncan J. Watts; Ingunn Kathrine Wehus; David P. Woody
<jats:title>Abstract</jats:title> <jats:p>We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° < <jats:italic>ℓ</jats:italic> < 40° in Galactic longitude and ∣<jats:italic>b</jats:italic>∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of H <jats:sc>ii</jats:sc> regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact H <jats:sc>ii</jats:sc> contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span <jats:italic>ℓ</jats:italic> ∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 187
COMAP Early Science. VII. Prospects for CO Intensity Mapping at Reionization
Patrick C. Breysse; Dongwoo T. Chung; Kieran A. Cleary; Håvard T. Ihle; Hamsa Padmanabhan; Marta B. Silva; J. Richard Bond; Jowita Borowska; Morgan Catha; Sarah E. Church; Delaney A. Dunne; Hans Kristian Eriksen; Marie Kristine Foss; Todd Gaier; Joshua Ott Gundersen; Andrew I. Harris; Richard Hobbs; Laura Keating; James W. Lamb; Charles R. Lawrence; Jonas G. S. Lunde; Norman Murray; Timothy J. Pearson; Liju Philip; Maren Rasmussen; Anthony C. S. Readhead; Thomas J. Rennie; Nils-Ole Stutzer; Marco P. Viero; Duncan J. Watts; Ingunn Kathrine Wehus; David P. Woody
<jats:title>Abstract</jats:title> <jats:p>We introduce COMAP-<jats:italic>EoR</jats:italic>, the next generation of the Carbon Monoxide Mapping Array Project aimed at extending CO intensity mapping to the Epoch of Reionization. COMAP-<jats:italic>EoR</jats:italic> supplements the existing 30 GHz COMAP Pathfinder with two additional 30 GHz instruments and a new 16 GHz receiver. This combination of frequencies will be able to simultaneously map CO(1–0) and CO(2–1) at reionization redshifts (<jats:italic>z</jats:italic> ∼ 5–8) in addition to providing a significant boost to the <jats:italic>z</jats:italic> ∼ 3 sensitivity of the Pathfinder. We examine a set of existing models of the EoR CO signal, and find power spectra spanning several orders of magnitude, highlighting our extreme ignorance about this period of cosmic history and the value of the COMAP-<jats:italic>EoR</jats:italic> measurement. We carry out the most detailed forecast to date of an intensity mapping cross correlation, and find that five out of the six models we consider yield signal to noise ratios (S/Ns) ≳ 20 for COMAP-<jats:italic>EoR</jats:italic>, with the brightest reaching a S/N above 400. We show that, for these models, COMAP-<jats:italic>EoR</jats:italic> can make a detailed measurement of the cosmic molecular gas history from <jats:italic>z</jats:italic> ∼ 2–8, as well as probe the population of faint, star-forming galaxies predicted by these models to be undetectable by traditional surveys. We show that, for the single model that does not predict numerous faint emitters, a COMAP-<jats:italic>EoR</jats:italic>-type measurement is required to rule out their existence. We briefly explore prospects for a third-generation Expanded Reionization Array (COMAP-<jats:italic>ERA</jats:italic>) capable of detecting the faintest models and characterizing the brightest signals in extreme detail.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 188
The Splashback Mass Function in the Presence of Massive Neutrinos
Suho Ryu; Jounghun Lee
<jats:title>Abstract</jats:title> <jats:p>We present a complementary methodology to constrain the total neutrino mass, ∑<jats:italic>m</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub>, based on the diffusion coefficient of the splashback mass function of dark matter halos. Analyzing the snapshot data from the Massive Neutrino Simulations, we numerically obtain the number densities of distinct halos identified via the SPARTA code as a function of their splashback masses at various redshifts for two different cases of ∑<jats:italic>m</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> = 0.0 and 0.1 eV. Then, we fit the numerical results to the recently developed analytic formula characterized by the diffusion coefficient that quantifies the degree of ambiguity in the identification of the splashback boundaries. Our analysis confirms that the analytic formula works excellently even in the presence of neutrinos and that the decrement of its diffusion coefficient with redshift is well described by a linear fit, <jats:italic>B</jats:italic>(<jats:italic>z</jats:italic> − <jats:italic>z</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub>), in the redshift range of 0.2 ≤ <jats:italic>z</jats:italic> ≤ 2. It turns out that the massive neutrino case yields a significantly lower value of <jats:italic>B</jats:italic> and a substantially higher value of <jats:italic>z</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub> than the massless neutrino case, which indicates that the higher the masses that neutrinos have, the more severely the splashback boundaries become disturbed by the surroundings. Given our result, we conclude that the total neutrino mass can in principle be constrained by measuring how rapidly the diffusion coefficient of the splashback mass function diminishes with redshifts at <jats:italic>z</jats:italic> ≥ 0.2. We also discuss the anomalous behavior of the diffusion coefficient found at lower redshifts for both of the ∑<jats:italic>m</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> cases, and ascribe it to the fundamental limitation of the SPARTA code at <jats:italic>z</jats:italic> ≤ 0.13.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 189
The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources
Ke Fang; John S. Gallagher; Francis Halzen
<jats:title>Abstract</jats:title> <jats:p>The diffuse flux of cosmic neutrinos has been measured by the IceCube Observatory from TeV to PeV energies. We show that an improved characterization of this flux at lower energies, TeV and sub-TeV, reveals important information on the nature of the astrophysical neutrino sources in a model-independent way. Most significantly, it could confirm the present indications that neutrinos originate in cosmic environments that are optically thick to GeV–TeV <jats:italic>γ</jats:italic>-rays. This conclusion will become inevitable if an uninterrupted or even steeper neutrino power law is observed in the TeV region. In such <jats:italic>γ</jats:italic>-ray-obscured sources, the <jats:italic>γ</jats:italic>-rays that inevitably accompany cosmic neutrinos will cascade down to MeV–GeV energies. The requirement that the cascaded <jats:italic>γ</jats:italic>-ray flux accompanying cosmic neutrinos should not exceed the observed diffuse <jats:italic>γ</jats:italic>-ray background puts constraints on the peak energy and density of the radiation fields in the sources. Our calculations inspired by the existing data suggest that a fraction of the observed diffuse MeV–GeV <jats:italic>γ</jats:italic>-ray background may be contributed by neutrino sources with intense radiation fields that obscure the high-energy <jats:italic>γ</jats:italic>-ray emission accompanying the neutrinos.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 190
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Xuchun Duan; Ting Li; Qihang Jing
<jats:title>Abstract</jats:title> <jats:p>We analyze 152 large confined flares (GOES class ≥ M1.0 and ≤ 45° from disk center) during 2010−2019, and classify them into two types according to the criterion taken from the work of Li et al. “Type I” flares are characterized by slipping motions of flare loops and ribbons and a stable filament underlying the flare loops. “Type II” flares are associated with the failed eruptions of the filaments, which can be explained by the classical 2D flare model. A total of 59 flares are “Type I” flares (about 40%) and 93 events are “Type II” flares (about 60%). There are significant differences in distributions of the total unsigned magnetic flux (Φ<jats:sub>AR</jats:sub>) of active regions (ARs) producing the two types of confined flares, with “Type I” confined flares from ARs with a larger Φ<jats:sub>AR</jats:sub> than “Type II.” We calculate the mean shear angle Ψ<jats:sub>HFED</jats:sub> within the core of an AR prior to the flare onset, and find that it is slightly smaller for “Type I” flares than that for “Type II” events. The relative nonpotentiality parameter Ψ<jats:sub>HFED</jats:sub>/Φ<jats:sub>AR</jats:sub> has the best performance in distinguishing the two types of flares. About 73% of “Type I” confined flares have Ψ<jats:sub>HFED</jats:sub>/Φ<jats:sub>AR</jats:sub><1.0 × 10<jats:sup>−21</jats:sup> degree Mx<jats:sup>−1</jats:sup>, and about 66% of “Type II” confined events have Ψ<jats:sub>HFED</jats:sub>/Φ<jats:sub>AR</jats:sub> ≥ 1.0 × 10<jats:sup>−21</jats:sup> degree Mx<jats:sup>−1</jats:sup>. We suggest that “Type I” confined flares cannot be explained by the standard flare model in 2D/3D, and the occurrence of multiple slipping magnetic reconnections within the complex magnetic systems probably leads to the observed flare.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 191